If a sunspot has a temperature of 4,270 K and the average solar photosphere has a temperature of 5,780 K, how many times more energy is emitted in 1 second from a square meter of the photosphere compared to a square meter of the sunspot? (Hint: Use the Stefan-Boltzmann law,  E = σT4 (J/s/m2)  where E is the energy, σ is a proportionality constant equal to 5.67 ✕ 10−8 J/s/m2/K4, and T is the temperature in kelvins.)

The Solar System
9th Edition
ISBN:9781305804562
Author:Seeds
Publisher:Seeds
Chapter8: The Sun
Section: Chapter Questions
Problem 7P
icon
Related questions
icon
Concept explainers
Question
If a sunspot has a temperature of 4,270 K and the average solar photosphere has a temperature of 5,780 K, how many times more energy is emitted in 1 second from a square meter of the photosphere compared to a square meter of the sunspot? (Hint: Use the Stefan-Boltzmann law, 
E = σT4 (J/s/m2)
 where E is the energy, σ is a proportionality constant equal to 5.67 ✕ 10−8 J/s/m2/K4, and T is the temperature in kelvins.)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Energy transfer
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
The Solar System
The Solar System
Physics
ISBN:
9781305804562
Author:
Seeds
Publisher:
Cengage
Stars and Galaxies (MindTap Course List)
Stars and Galaxies (MindTap Course List)
Physics
ISBN:
9781337399944
Author:
Michael A. Seeds
Publisher:
Cengage Learning
The Solar System
The Solar System
Physics
ISBN:
9781337672252
Author:
The Solar System
Publisher:
Cengage
Stars and Galaxies
Stars and Galaxies
Physics
ISBN:
9781305120785
Author:
Michael A. Seeds, Dana Backman
Publisher:
Cengage Learning
Foundations of Astronomy (MindTap Course List)
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:
9781337399920
Author:
Michael A. Seeds, Dana Backman
Publisher:
Cengage Learning
Astronomy
Astronomy
Physics
ISBN:
9781938168284
Author:
Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:
OpenStax