(ii) the maximum energy that can be made available for work due to the process.

Chemistry: An Atoms First Approach
2nd Edition
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Steven S. Zumdahl, Susan A. Zumdahl
Chapter8: Gases
Section: Chapter Questions
Problem 125AE
icon
Related questions
icon
Concept explainers
Question

B) ii)

Please show all working.
Universal gas constant, R = 8.3145 J mol-1 K-1
1. The Helmholtz function of a certain gas is given by
v – nb)T²
an?
F(T,V) = –nRT|1+ ln|
пф
V
where n is the number of moles of gas, T is the temperatures of the gas, V is the volume of
the gas, and a, b, and are constants.
(a) Derive the equation of state, the entropy, and the internal energy of the gas.
(b) Suppose that 100 moles of the gas expands from 2 m³ to 5 m³ at 280 K and that the
constants have the values a = 0.364 J m³ mol¬2 , b = 4.27 x 10-5 m³ mol¬1, and
$ = 1.09 x 10-5 m³ K³/² mol¯1. Calculate:
(i) aU.
(ii) the maximum energy that can be made available for work due to the process.
(iii) the speed of sound in the gas after the expansion if the ratio of specific heat
capacities for the gas is y = 1.28 and the density of the gas is 0.881 kg m-3 in the
final state.
(c) Using the free energy of a monatomic ideal gas, derive the ideal gas law.
Transcribed Image Text:Please show all working. Universal gas constant, R = 8.3145 J mol-1 K-1 1. The Helmholtz function of a certain gas is given by v – nb)T² an? F(T,V) = –nRT|1+ ln| пф V where n is the number of moles of gas, T is the temperatures of the gas, V is the volume of the gas, and a, b, and are constants. (a) Derive the equation of state, the entropy, and the internal energy of the gas. (b) Suppose that 100 moles of the gas expands from 2 m³ to 5 m³ at 280 K and that the constants have the values a = 0.364 J m³ mol¬2 , b = 4.27 x 10-5 m³ mol¬1, and $ = 1.09 x 10-5 m³ K³/² mol¯1. Calculate: (i) aU. (ii) the maximum energy that can be made available for work due to the process. (iii) the speed of sound in the gas after the expansion if the ratio of specific heat capacities for the gas is y = 1.28 and the density of the gas is 0.881 kg m-3 in the final state. (c) Using the free energy of a monatomic ideal gas, derive the ideal gas law.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Ideal and Real Gases
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
Chemistry
ISBN:
9781305079243
Author:
Steven S. Zumdahl, Susan A. Zumdahl
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781133611097
Author:
Steven S. Zumdahl
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
General Chemistry - Standalone book (MindTap Cour…
General Chemistry - Standalone book (MindTap Cour…
Chemistry
ISBN:
9781305580343
Author:
Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:
Cengage Learning
Introduction to General, Organic and Biochemistry
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:
9781285869759
Author:
Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:
Cengage Learning
Introductory Chemistry: An Active Learning Approa…
Introductory Chemistry: An Active Learning Approa…
Chemistry
ISBN:
9781305079250
Author:
Mark S. Cracolice, Ed Peters
Publisher:
Cengage Learning