In a heat engine, 3.00 mol of a monatomic ideal gas, initially at 4.00 atm of pressure, undergoes an isothermal expansion, increasing its volume by a factor 9.50 at a constant temperature of 650.0 K. The gas is then compressed at a constant pressure to its original volume. Finally, the pressure is increased at constant volume back to the original pressure. a) Draw a PV diagram to illustrate the cycle for this engine. Label he axes with numerical values. b) find the heat flow into or out the gas during each step. c) Find the entropy change of the gas during the isothermal step. d) What is the entropy change of the gas for a complete cycle? Is it equal in magnitdre to the entropy change of the environment per cycle? Explain.

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter17: Energy In Thermal Processes: The First Law Of Thermodynamics
Section: Chapter Questions
Problem 48P: An ideal gas with specific heat ratio confined to a cylinder is put through a closed cycle....
icon
Related questions
Question
Could you please answer to the d) question?
In a heat engine, 3.00 mol of a monatomic ideal gas, initially at 4.00 atm of pressure, undergoes an
isothermal expansion, increasing its volume by a factor 9.50 at a constant temperature of 650.0 K. The gas is
then compressed at a constant pressure to its original volume. Finally, the pressure is increased at constant
volume back to the original pressure.
a) Draw a PV diagram to illustrate the cycle for this engine. Label he axes with numerical values.
b) find the heat flow into or out the gas during each step.
c) Find the entropy change of the gas during the isothermal step.
d) What is the entropy change of the gas for a complete cycle? Is it equal in magnitdre to the entropy change
of the environment per cycle? Explain.
Transcribed Image Text:In a heat engine, 3.00 mol of a monatomic ideal gas, initially at 4.00 atm of pressure, undergoes an isothermal expansion, increasing its volume by a factor 9.50 at a constant temperature of 650.0 K. The gas is then compressed at a constant pressure to its original volume. Finally, the pressure is increased at constant volume back to the original pressure. a) Draw a PV diagram to illustrate the cycle for this engine. Label he axes with numerical values. b) find the heat flow into or out the gas during each step. c) Find the entropy change of the gas during the isothermal step. d) What is the entropy change of the gas for a complete cycle? Is it equal in magnitdre to the entropy change of the environment per cycle? Explain.
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Second law of thermodynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning