In the final stages of production, a pharmaceutical is sterilized by heating it from 25 to 75°C as it moves at 0.22 m/s through a straight thin-walled stainless steel tube of 12.7-mm diameter. A uniform heat flux is maintained by an electric resistance heater wrapped around the outer surface of the tube. If the tube is 10 m long, what is the required heat flux? If fluid enters the tube with a fully developed velocity profile and a uniform temperature profile, what is the surface temperature at the tube exit? Fluid properties may be approximated as ρ=ρ= 1000 kg/m3, cp=cp= 4000 J/kg·K, μ=μ= 2 × 10-3 kg/s·m, k=k= 0.8 W/m·K, and Pr=P⁢r= 10.

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter7: Forced Convection Inside Tubes And Ducts
Section: Chapter Questions
Problem 7.43P: 7.43 Liquid sodium is to be heated from 500 K to 600 K by passing it at a flow rate of 5.0 kg/s...
icon
Related questions
Question

In the final stages of production, a pharmaceutical is sterilized by heating it from 25 to 75°C as it moves at 0.22 m/s through a straight thin-walled stainless steel tube of 12.7-mm diameter. A uniform heat flux is maintained by an electric resistance heater wrapped around the outer surface of the tube. If the tube is 10 m long, what is the required heat flux? If fluid enters the tube with a fully developed velocity profile and a uniform temperature profile, what is the surface temperature at the tube exit? Fluid properties may be approximated as ρ=ρ= 1000 kg/m3, cp=cp= 4000 J/kg·K, μ=μ= 2 × 10-3 kg/s·m, k=k= 0.8 W/m·K, and Pr=P⁢r= 10.

Determine the required heat flux, W/m².
q's
W/m²
i
Determine the surface temperature at the tube exit, in °C.
Ts,o= i
°℃
Transcribed Image Text:Determine the required heat flux, W/m². q's W/m² i Determine the surface temperature at the tube exit, in °C. Ts,o= i °℃
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Conduction
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning