parabolic reflector focuses electromagnetic waves into a beam as shown in the figure. The electromagnetic radiation is pulsed, with a pulse frequency of 19.0 GHz, and the duration of each pulse is  t = 1.00 ns.  The face of the reflector has a radius of 3.00 cm, and the average power during each pulse is 29.0 kW. (Due to the nature of this problem, do not use rounded intermediate values in your calculations—including answers submitted in WebAssign.) (a) What is the wavelength (in cm) of these electromagnetic waves? (b) What is the total energy (in µJ) contained in each pulse? (c)Compute the average energy density (in mJ/m3)

Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Katz, Debora M.
Chapter34: Maxwell’s Equations And Electromagnetic Waves
Section: Chapter Questions
Problem 82PQ
icon
Related questions
Question

A parabolic reflector focuses electromagnetic waves into a beam as shown in the figure. The electromagnetic radiation is pulsed, with a pulse frequency of 19.0 GHz, and the duration of each pulse is 

t = 1.00 ns.

 The face of the reflector has a radius of 3.00 cm, and the average power during each pulse is 29.0 kW. (Due to the nature of this problem, do not use rounded intermediate values in your calculations—including answers submitted in WebAssign.)

(a)
What is the wavelength (in cm) of these electromagnetic waves?
(b)
What is the total energy (in µJ) contained in each pulse?
(c)Compute the average energy density (in mJ/m3) inside each pulse.
(d)Determine the amplitude of the electric field (in kV/m) and magnetic field (in µT) in these electromagnetic waves.
(e)
Assuming that this pulsed beam strikes an absorbing surface, compute the force (in µN) exerted on the surface during the 1.00 ns duration of each pulse.
A parabolic reflector focuses electromagnetic waves into a beam as shown in the figure. The electromagnetic radiation is pulsed, with a pulse frequency of 19.0 GHz, and the duration of each pulse is t = 1.00 ns. The face of the reflector has a radius of 3.00 cm, and the
average power during each pulse is 29.0 kw. (Due to the nature of this problem, do not use rounded intermediate values in your calculations-including answers submitted in WebAssign.)
(a) What is the wavelength (in cm) of these electromagnetic waves?
cm
(b) What is the total energy (in pJ) contained in each pulse?
(c) Compute the average energy density (in mJ/m³) inside each pulse.
mJ/m3
(d) Determine the amplitude of the electric field (in kV/m) and magnetic field (in µT) in these electromagnetic waves.
Emax
kV/m
Bmax =
pT
(e) Assuming that this pulsed beam strikes an absorbing surface, compute the force (in pN) exerted on the surface during the 1.00 ns duration of each pulse.
UN
Transcribed Image Text:A parabolic reflector focuses electromagnetic waves into a beam as shown in the figure. The electromagnetic radiation is pulsed, with a pulse frequency of 19.0 GHz, and the duration of each pulse is t = 1.00 ns. The face of the reflector has a radius of 3.00 cm, and the average power during each pulse is 29.0 kw. (Due to the nature of this problem, do not use rounded intermediate values in your calculations-including answers submitted in WebAssign.) (a) What is the wavelength (in cm) of these electromagnetic waves? cm (b) What is the total energy (in pJ) contained in each pulse? (c) Compute the average energy density (in mJ/m³) inside each pulse. mJ/m3 (d) Determine the amplitude of the electric field (in kV/m) and magnetic field (in µT) in these electromagnetic waves. Emax kV/m Bmax = pT (e) Assuming that this pulsed beam strikes an absorbing surface, compute the force (in pN) exerted on the surface during the 1.00 ns duration of each pulse. UN
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Maxwell Equation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill