Part A In principle, when you fire a rifle, the recoil should push you backward. How big a push will it give? Let's find out by doing a calculation in a very artificial situation. Suppose a man standing on frictionless ice fires a rifle horizontally. The mass of the man together with the rifle is 70 kg, and the mass of the bullet is 10 g. If the bullet leaves the muzzle at a speed of 500 m/s, what is the final speed of the man? Express your answer with the appropriate units. For the steps and strategies involved in solving a similar problem, you may view a Video Tutor Solution. µA m (Vman)f = .071

University Physics Volume 1
18th Edition
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:William Moebs, Samuel J. Ling, Jeff Sanny
Chapter9: Linear Momentum And Collisions
Section: Chapter Questions
Problem 55P: A projectile of mass 2.0 kg is fired in the air at an angle of 40.0 to the horizon at a speed of...
icon
Related questions
Topic Video
Question

In principle, when you fire a rifle, the recoil should push you backward. How big a push will it give? Let's find out by doing a calculation in a very artificial situation. Suppose a man standing on frictionless ice fires a rifle horizontally. The mass of the man together with the rifle is 70 kg, and the mass of the bullet is 10 g. If the bullet leaves the muzzle at a speed of 500 m/s, what is the final speed of the man?

Part A
In principle, when you fire a rifle, the recoil should push you backward. How big a push will it give?
Let's find out by doing a calculation in a very artificial situation. Suppose a man standing on frictionless
ice fires a rifle horizontally. The mass of the man together with the rifle is 70 kg, and the mass of the
bullet is 10 g.
If the bullet leaves the muzzle at a speed of 500 m/s, what is the final speed of the man?
For the steps and strategies involved in solving a similar problem, you may view a Video Tutor Solution.
Express your answer with the appropriate units.
µA
?
m
(Vman)f = -.071
S
Submit
Previous Answers Request Answer
X Incorrect; Try Again; 4 attempts remaining
Transcribed Image Text:Part A In principle, when you fire a rifle, the recoil should push you backward. How big a push will it give? Let's find out by doing a calculation in a very artificial situation. Suppose a man standing on frictionless ice fires a rifle horizontally. The mass of the man together with the rifle is 70 kg, and the mass of the bullet is 10 g. If the bullet leaves the muzzle at a speed of 500 m/s, what is the final speed of the man? For the steps and strategies involved in solving a similar problem, you may view a Video Tutor Solution. Express your answer with the appropriate units. µA ? m (Vman)f = -.071 S Submit Previous Answers Request Answer X Incorrect; Try Again; 4 attempts remaining
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Momentum
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning