Potential and potential energy relationship and units. (For more on the units of V, J, and eV, see the text's discussion in section 22.1, just before example 22.1, or my video!) (a) A -50µC charge moves along a straight line a distance of 20 cm in a uniform electric field of 120 N/C. The charge is traveling at an angle of 30 degrees relative to the direction of the electric field. How much electrical energy (in Joules) did the charge gain or lose? And is it a gain or loss? Convert the energy to units of eV. (b) The potential difference between the two terminals of a AA battery is 1.5 V. An electron moving from the negative to the positive terminal will lose electric potential energy (and, presumably, gain some other energy or transfer it to elsewhere.) How do we know the electrical potential energy of the electron decreases in this case? How much potential energy energy does one electron lose when it moves from the negative terminal to the positive one of this battery? Answer first in eV and then in Joules. (c) An electron moves a distance of 20 cm. The start location is at a potential that is 120 V lower than the potential at the ending location. Find the change in the electron's potential energy in units of eV first and then convert the answer to units of Joules. (d) When is it easier to calculate the energy in eV and then convert to Joules if necessary? When is it easier to calculate the energy in Joules first and then convert to eV if necessary? (e) For E level work: If the electric potential energy of an electron moving to a higher potential is converted to light (a photon is emitted,) then the wavelength of the light is related to the change in the electron's energy U by the following relationship: X = (1240 nm eV)/U, where the energy is measured in eV. Use this relationship find the wavelength (in nm) of the light emitted by the electron crossing a 1.5 V potential difference. In what part of the spectrum (radio, IR, visible, and if so, what color UV, x ray, etc) is that? (you probably need to look it up! Feel free to search the internet.)

College Physics
1st Edition
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:Paul Peter Urone, Roger Hinrichs
Chapter18: Electric Charge And Electric Field
Section: Chapter Questions
Problem 53PE: A simple and common technique for accelerating electrons is shown in Figure 18.55, where there is a...
icon
Related questions
Question
Problem 1
Potential and potential energy relationship and units. (For more on the units of V, J, and eV, see
the text's discussion in section 22.1, just before example 22.1, or my video!)
(a) A -50µC charge moves along a straight line a distance of 20 cm in a uniform electric field of 120
N/C. The charge is traveling at an angle of 30 degrees relative to the direction of the electric
field. How much electrical energy (in Joules) did the charge gain or lose? And is it a gain or
loss?
Convert the energy to units of eV.
(b) The potential difference between the two terminals of a AA battery is 1.5 V. An electron moving
from the negative to the positive terminal will lose electric potential energy (and, presumably,
gain some other energy or transfer it to elsewhere.) How do we know the electrical potential
energy of the electron decreases in this case? How much potential energy energy does one
electron lose when it moves from the negative terminal to the positive one of this battery?
Answer first in eV and then in Joules.
(c) An electron moves a distance of 20 cm. The start location is at a potential that is 120 V lower
than the potential at the ending location. Find the change in the electron's potential energy in
units of eV first and then convert the answer to units of Joules.
(d) When is it easier to calculate the energy in eV and then convert to Joules if necessary? When
is it easier to calculate the energy in Joules first and then convert to eV if necessary?
(e) For E level work: If the electric potential energy of an electron moving to a higher potential
is converted to light (a photon is emitted,) then the wavelength of the light is related to the
change in the electron's energy U by the following relationship:
X = (1240 nm-eV)/U,
where the energy is measured in eV. Use this relationship find the wavelength (in nm) of the
light emitted by the electron crossing a 1.5 V potential difference. In what part of the spectrum
(radio, IR, visible, and if so, what color UV, x ray, etc) is that? (you probably need to look it
up! Feel free to search the internet.)
Transcribed Image Text:Problem 1 Potential and potential energy relationship and units. (For more on the units of V, J, and eV, see the text's discussion in section 22.1, just before example 22.1, or my video!) (a) A -50µC charge moves along a straight line a distance of 20 cm in a uniform electric field of 120 N/C. The charge is traveling at an angle of 30 degrees relative to the direction of the electric field. How much electrical energy (in Joules) did the charge gain or lose? And is it a gain or loss? Convert the energy to units of eV. (b) The potential difference between the two terminals of a AA battery is 1.5 V. An electron moving from the negative to the positive terminal will lose electric potential energy (and, presumably, gain some other energy or transfer it to elsewhere.) How do we know the electrical potential energy of the electron decreases in this case? How much potential energy energy does one electron lose when it moves from the negative terminal to the positive one of this battery? Answer first in eV and then in Joules. (c) An electron moves a distance of 20 cm. The start location is at a potential that is 120 V lower than the potential at the ending location. Find the change in the electron's potential energy in units of eV first and then convert the answer to units of Joules. (d) When is it easier to calculate the energy in eV and then convert to Joules if necessary? When is it easier to calculate the energy in Joules first and then convert to eV if necessary? (e) For E level work: If the electric potential energy of an electron moving to a higher potential is converted to light (a photon is emitted,) then the wavelength of the light is related to the change in the electron's energy U by the following relationship: X = (1240 nm-eV)/U, where the energy is measured in eV. Use this relationship find the wavelength (in nm) of the light emitted by the electron crossing a 1.5 V potential difference. In what part of the spectrum (radio, IR, visible, and if so, what color UV, x ray, etc) is that? (you probably need to look it up! Feel free to search the internet.)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Electric field
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax