Problem 4 ( A concentrating solar power collector system provides energy by heat transfer (heat input) to a power cycle a rate of 3 MW. The cycle thermal efficiency, defined as the ratio of work output to the heat input, is 32%. What is the work output, in MWh for 4380 hours of steady-state operation? Note that the work is valued at $0.08/kWh. A. 336 MWh B. 4,205 MWh C. 13,140 MWh D. 41,063 MWh Problem 5 ( A household has a 6m x 8m brick wall with a thickness of 25cm and a thermal conductivity of 0.69 W/m°C. During the winter, the temperature of the air inside the house is 25°C and the average outdoor air temperature is 4°C. Determine the rate of heat transfer through the wall, in W. (Choose nearest value) A. 2082 W B. 2782 W C. 3782 W D. 4782 W Problem 6( An exposed 8 cm external diameter, 20 m long hot-water pipe at 80°C is losing heat to the surrounding (outdoor) air by natural convection. The average outdoor temperature is 5°C. The heat transfer coefficient is 25 W/m2°C. What is the heat loss by natural convection, in kW? A. 9.4 W B. 10.0 W C. 10.4 W

Physics for Scientists and Engineers
10th Edition
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter21: Heat Engines, Entropy, And The Second Law Of Thermodynamics
Section: Chapter Questions
Problem 34AP: Suppose an ideal (Carnot) heat pump could be constructed for use as an air conditioner. (a) Obtain...
icon
Related questions
Question
First i apeal of request to solve all questions with ßolutions ok if u domt solve all then skip please other wise iw ill dislike if u dont solve all .solve all i req again thanks
Problem 4
A concentrating solar power collector system provides energy by heat transfer (heat input) to a
power cycle a rate of 3 MW. The cycle thermal efficiency, defined as the ratio of work output to
the heat input, is 32%. What is the work output, in MWh for 4380 hours of steady-state
operation? Note that the work is valued at $0.08/kWh.
A. 336 MWh
B. 4,205 MWh
C. 13,140 MWh
D. 41,063 MWh
Problem 5 (
A household has a 6m x 8m brick wall with a thickness of 25cm and a thermal conductivity of
0.69 W/m°C. During the winter, the temperature of the air inside the house is 25°C and the
average outdoor air temperature is 4°C. Determine the rate of heat transfer through the wall, in
W. (Choose nearest value)
A. 2082 W
B. 2782 W
C. 3782 W
D. 4782 W
Problem 6 (
An exposed 8 cm external diameter, 20 m long hot-water pipe at 80°C is losing heat to the
surrounding (outdoor) air by natural convection. The average outdoor temperature is 5°C. The
heat transfer coefficient is 25 W/m2°C. What heat loss by natural vection, in kW?
A. 9.4 W
B. 10.0 W
C. 10.4 W
D. 11.4 W
Problem 7 (
A spherical ball with a diameter of 10 cm has an outer surface that is maintained at a
temperature of 200°C. It is suspended in the middle of a room that has an average temperature
of 20°C. If the surface emissivity is 0.8, determine the rate of radiative heat transfer from the
ball to the room in W. (Choose the nearest value)
A. 2.3 W
B. 4.5 W
C. 19.4 W
D. 60.8 W
Transcribed Image Text:Problem 4 A concentrating solar power collector system provides energy by heat transfer (heat input) to a power cycle a rate of 3 MW. The cycle thermal efficiency, defined as the ratio of work output to the heat input, is 32%. What is the work output, in MWh for 4380 hours of steady-state operation? Note that the work is valued at $0.08/kWh. A. 336 MWh B. 4,205 MWh C. 13,140 MWh D. 41,063 MWh Problem 5 ( A household has a 6m x 8m brick wall with a thickness of 25cm and a thermal conductivity of 0.69 W/m°C. During the winter, the temperature of the air inside the house is 25°C and the average outdoor air temperature is 4°C. Determine the rate of heat transfer through the wall, in W. (Choose nearest value) A. 2082 W B. 2782 W C. 3782 W D. 4782 W Problem 6 ( An exposed 8 cm external diameter, 20 m long hot-water pipe at 80°C is losing heat to the surrounding (outdoor) air by natural convection. The average outdoor temperature is 5°C. The heat transfer coefficient is 25 W/m2°C. What heat loss by natural vection, in kW? A. 9.4 W B. 10.0 W C. 10.4 W D. 11.4 W Problem 7 ( A spherical ball with a diameter of 10 cm has an outer surface that is maintained at a temperature of 200°C. It is suspended in the middle of a room that has an average temperature of 20°C. If the surface emissivity is 0.8, determine the rate of radiative heat transfer from the ball to the room in W. (Choose the nearest value) A. 2.3 W B. 4.5 W C. 19.4 W D. 60.8 W
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 4 images

Blurred answer
Knowledge Booster
Second law of thermodynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning