Problem (5.2) An impulse turbine has a number of pressure stages (pressure compounded turbine). The nozzle angle in the first stage is 20° and the blade exit angle 30°. The blade speed =120 m/s and the velocity of steam leaving nozzle =300 m/s. If the blade velocity coefficient =0.8 and the nozzle efficiency 0.85, find the work done per kg steam and the stage efficiency. If the steam supplied to the first stage is at 2 MPa and 250°C and the condenser pressure =0.01 MPa estimate the number of stages required.

Refrigeration and Air Conditioning Technology (MindTap Course List)
8th Edition
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Chapter40: Typical Operating Conditions
Section: Chapter Questions
Problem 10RQ: The seasonal energy efficiency ratio (SEER) includes the energy used in the _____and _____cycles.
icon
Related questions
Question
Problem (5.2) An impulse turbine has a number of pressure stages
(pressure compounded turbine). The nozzle angle in the first stage is 20°
and the blade exit angle =30°. The blade speed =120 m/s and the velocity
of steam leaving nozzle =300 m/s. If the blade velocity coefficient =0.8
and the nozzle efficiency =0.85, find the work done per kg steam and the
stage efficiency. If the steam supplied to the first stage is at 2 MPa and
250°C and the condenser pressure =0.01 MPa estimate the number of
stages required.
Ans. [36 kJ/kg, 68 %, x 4 ]
Transcribed Image Text:Problem (5.2) An impulse turbine has a number of pressure stages (pressure compounded turbine). The nozzle angle in the first stage is 20° and the blade exit angle =30°. The blade speed =120 m/s and the velocity of steam leaving nozzle =300 m/s. If the blade velocity coefficient =0.8 and the nozzle efficiency =0.85, find the work done per kg steam and the stage efficiency. If the steam supplied to the first stage is at 2 MPa and 250°C and the condenser pressure =0.01 MPa estimate the number of stages required. Ans. [36 kJ/kg, 68 %, x 4 ]
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Forms of Energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Refrigeration and Air Conditioning Technology (Mi…
Refrigeration and Air Conditioning Technology (Mi…
Mechanical Engineering
ISBN:
9781305578296
Author:
John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:
Cengage Learning