radius 0.1 m was released from the top of a platform with an initial velocity of 0m/s as shown in the figure below. The height of the platform is 4 m and the diameter of the circular loop in the middle is 3 m. Assume the track is frictionless and there is no air resistance. (a) What is the velocity of the ball when it reaches the bottom of the slope (when height = 0

International Edition---engineering Mechanics: Statics, 4th Edition
4th Edition
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:Andrew Pytel And Jaan Kiusalaas
Chapter8: Centroids And Distributed Loads
Section: Chapter Questions
Problem 8.86P: Determine the volume of the concrete arch dam.
icon
Related questions
Question

A spherical ball of mass 0.2 kg and radius 0.1 m was released from the top of a
platform with an initial velocity of 0m/s as shown in the figure below. The height of the
platform is 4 m and the diameter of the circular loop in the middle is 3 m. Assume the
track is frictionless and there is no air resistance.


(a) What is the velocity of the ball when it reaches the bottom of the slope (when
height = 0 m and before entering the loop)?

(b) What is the velocity of the ball, if it reaches the top of the loop? Will the ball
make the loop?

(c) Now, ignore the presence of the loop. The ball falls via the same loop from
position 1 and directly roll towards position 4, bypassing the loop entirely. The
height of the hump at position 4 is 1 m. The ball just about lifts off contact from
the track as it passes through position 4 at top of the hump. What is the radius
of the curvature of this hump?

(d) What are the kinetic energies of the ball, when it is at positions 2, 3 and 4?

4 m
3 m
Transcribed Image Text:4 m 3 m
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Dynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
International Edition---engineering Mechanics: St…
International Edition---engineering Mechanics: St…
Mechanical Engineering
ISBN:
9781305501607
Author:
Andrew Pytel And Jaan Kiusalaas
Publisher:
CENGAGE L