show me steps of the determine blue and all information is here explain to me step by step i need every details

Linear Algebra: A Modern Introduction
4th Edition
ISBN:9781285463247
Author:David Poole
Publisher:David Poole
Chapter2: Systems Of Linear Equations
Section2.4: Applications
Problem 27EQ
icon
Related questions
Question

show me steps of the determine blue and all information is here explain to me step by step i need every details

Let w2n-1 = Un, w2n–2 = Vn, z2n–1 = Xn and z2n-2 = Yn, implies that
Vn+1 – ko Un – ko Vn = µ,
(11)
Un+1 - ki Vn+1 - kị Un = µ,
and
Yn+1 – vo Xn - vo Yn = €,
(12)
Xn+1 - Vị Yn+1 – vị Xn = €.
It is observe that, the equations (11) and (12) are system of linear non-homogeneous difference
equations with constants coefficients. First, we solve the system in (11). Thus, consider (11) is
(E – ko) Vn – ko Un = H,
(E – k)) Un – kị E V, = µ,
(13)
(14)
where E = A + 1, is the shift operator. Multiplying (13) and (14) by (E – k1) and ko,
respectively,
(E – k1) µ,
(E – k1) (E – ko) Vn – (E – k1) ko Un
ko (E – k1) Un – ko ki E V
(15)
ko H.
(16)
Thus, the combination of (15) and (16) is
(E – (ko + k1+ ko k1) E + ko k1) Vn = (1 – kı + ko) µ,
(17)
(E² – O E + ko kı) Vn =
(1 – kı + ko) µ,
where o = ko + kı + ko k1. Clearly, (17) is linear difference equations from order two and it is
easy to obtain the solution,
0 + Vø? – 4 ko ki
62 – 4 ko k1
(1- k + ko`
V = A
+B
+
(18)
2
2
1- kо — k1
since A and B are constants. By Substituting (18) in (13), we give
1
U, = A
ko
$ + Vø2 – 4 ko ki
- 1
0 + Vø2 – 4 ko k,
2
2 – 4 ko ki
- 1
$ - Vø2 – 4 ko ki
(19)
+B
ko
2
* ((-) ( )-
(1- k + ko
1- ko – ki
- 1
ko
H.
6.
Therefore,
62 – 4 ko ki
ø + Vo2 – 4 ko ki
A
1- k + ko
1– ko – k.
W2n-2 =
+ B
4, (20)
2
02 – 4 ko ki
² – 4 ko ki
1
A
ko
W2n–1
0 - Vø? – 4 ko k1
0 - Vo2 – 4 ko k1
+B
ko
- 1
2
1- kị + ko
1– ko – k1
1
u.
ko
+
(21)
For n = 0, 1,2,... Now, to calculate A and B, we solve the following system
(1- kı + ko
1- ko – k1
w-2 = A+ B+
62 – 4 ko ki
(1– k + ko
+
1- ko – k1,
0+ Vo2 – 4 ko ki
wo = A
+ B
which implies,
(1- k -
- ki + ko
Vo2 – 4 ko ki
22 – 8 ko ki
) -) (v - ako ki – 4) + 2 (we
w-2 -
wo-
ko - ki
V – 4 ko ki
262 – 8 ko ki
CG
-ki +
1- ko-ki)
ki + ko
H- w-2) (V2 - 4 kg k1 +
B
+2
wo-
- ko – ki
Similarly, we apply the same previous process to get the solution of (12), which is given as
+ V2 - 4o v
2-4 vo V1
22n-2 = C
+ D
2
1
22n-1 = C
+ V2 – 4 vo v1
+ V2 - 4 vo vi
- V2 – 4 vo
- V2 - 4 vo VI
+ D
2
2
• (÷-() (-)-
(1- v + vo
1- v0 - V
where C and D are
- 4 vo vị
2 2 - 8 vo v1
1- v + vo
- vị +o
C =
+2
- vo - v1
V2 – 4 vo Vi
1-vi + vo
1- v + o
D
+2
1 – 0 = --2) (V2 – 4 o vi +
%3D
2 2 - 8 v0 Vı
-0 - v
The proof is complete.
Transcribed Image Text:Let w2n-1 = Un, w2n–2 = Vn, z2n–1 = Xn and z2n-2 = Yn, implies that Vn+1 – ko Un – ko Vn = µ, (11) Un+1 - ki Vn+1 - kị Un = µ, and Yn+1 – vo Xn - vo Yn = €, (12) Xn+1 - Vị Yn+1 – vị Xn = €. It is observe that, the equations (11) and (12) are system of linear non-homogeneous difference equations with constants coefficients. First, we solve the system in (11). Thus, consider (11) is (E – ko) Vn – ko Un = H, (E – k)) Un – kị E V, = µ, (13) (14) where E = A + 1, is the shift operator. Multiplying (13) and (14) by (E – k1) and ko, respectively, (E – k1) µ, (E – k1) (E – ko) Vn – (E – k1) ko Un ko (E – k1) Un – ko ki E V (15) ko H. (16) Thus, the combination of (15) and (16) is (E – (ko + k1+ ko k1) E + ko k1) Vn = (1 – kı + ko) µ, (17) (E² – O E + ko kı) Vn = (1 – kı + ko) µ, where o = ko + kı + ko k1. Clearly, (17) is linear difference equations from order two and it is easy to obtain the solution, 0 + Vø? – 4 ko ki 62 – 4 ko k1 (1- k + ko` V = A +B + (18) 2 2 1- kо — k1 since A and B are constants. By Substituting (18) in (13), we give 1 U, = A ko $ + Vø2 – 4 ko ki - 1 0 + Vø2 – 4 ko k, 2 2 – 4 ko ki - 1 $ - Vø2 – 4 ko ki (19) +B ko 2 * ((-) ( )- (1- k + ko 1- ko – ki - 1 ko H. 6. Therefore, 62 – 4 ko ki ø + Vo2 – 4 ko ki A 1- k + ko 1– ko – k. W2n-2 = + B 4, (20) 2 02 – 4 ko ki ² – 4 ko ki 1 A ko W2n–1 0 - Vø? – 4 ko k1 0 - Vo2 – 4 ko k1 +B ko - 1 2 1- kị + ko 1– ko – k1 1 u. ko + (21) For n = 0, 1,2,... Now, to calculate A and B, we solve the following system (1- kı + ko 1- ko – k1 w-2 = A+ B+ 62 – 4 ko ki (1– k + ko + 1- ko – k1, 0+ Vo2 – 4 ko ki wo = A + B which implies, (1- k - - ki + ko Vo2 – 4 ko ki 22 – 8 ko ki ) -) (v - ako ki – 4) + 2 (we w-2 - wo- ko - ki V – 4 ko ki 262 – 8 ko ki CG -ki + 1- ko-ki) ki + ko H- w-2) (V2 - 4 kg k1 + B +2 wo- - ko – ki Similarly, we apply the same previous process to get the solution of (12), which is given as + V2 - 4o v 2-4 vo V1 22n-2 = C + D 2 1 22n-1 = C + V2 – 4 vo v1 + V2 - 4 vo vi - V2 – 4 vo - V2 - 4 vo VI + D 2 2 • (÷-() (-)- (1- v + vo 1- v0 - V where C and D are - 4 vo vị 2 2 - 8 vo v1 1- v + vo - vị +o C = +2 - vo - v1 V2 – 4 vo Vi 1-vi + vo 1- v + o D +2 1 – 0 = --2) (V2 – 4 o vi + %3D 2 2 - 8 v0 Vı -0 - v The proof is complete.
In this paper, we solve and study the properties of the following system
Wn-p 2 zn-h
p=0
E wn-p zZn-h
h=1
h=0
Wn+1 =
p=1
+ u and zn+1 =
+ €,
(4)
Zn - €
Wn - u
where u and e are arbitrary positive real numbers with initial conditions w; and z; for i =
-2, –1,0.
Theorem 2.1. Let {wn, z,} 2 be a solution of (4), then
+ V2 – 4 ko kı
A
- 4 ko ki
- kị + ko
w2n-2
+B
ko
ki
+ V – 4 ko kị
$+ v2 – 4 ko ki
- V – 4 ko kı
1
+B
A
ko
w2n-1
1- ko
+ V2 – 4 vo VỊ
V2 – 4 vo V
- V + vo
22n-2
+ D
0 - V1
1 (+ Ve2 – 4 v0 vi
+ V2 – 4 vo vi
gb - V2 – 4 0 vỊ
V2 – 4 vo v1
22n-1
+D
2
1- v + vo
1- vo - VI
where A, B, C and D are constants defined as
ko
wo -4
ki =
z-1 +z-2
$ = ko + ki + ko k1,
w-1 +w-2
20 -e
20 -e
w-1 + w-2
= vo+ v1 + o V,
z-1 +2-2
wo -H
V2 – 4 ko ki
262 – 8 ko ki
4) (V2 – 4 ko kı – 4) +2
A
w-2-
-
1- ko - ki
V2 – 4 ko ki
2 62 - 8 ko ki
- ko + k1
(1– ki + ko
--) (v - sho ki +e) + 2 (wo - ( ) )].
B
4- w-2
- ko - ki
1- k - ko
V2 – 4 vo vI
2 2 - 8 v0 v
- vi + vo
- vO - V ,
- v + o
1- vo - V
+2
20
V2 – 4 v0 v1
1- v + vo
1-v + vo
D
E- 2-2
12 - 4 vO
+2
2 2
since ko + ki #1 and vo + v 71 for n e N.
Proof. To obtain the expressions of the general solutions for (4), we rewrite it in the follow
form
Zn-h
Wn-p
Wn+1 - 4
h=1
Zn+1 - €
p=1
and
(5)
2, - €
Wn -H
EWn-p
2 Zn-h
h=0
p=0
Then, we assume that
Wn+1 - u
Wn - u
kn+1 =
1
k, =
Wn-p
Wn-p
p=0
p=1
(6)
Zn+1 - €
Zn - €
Vn+1 =
1
Vn =
2
E zn-h
E zn-h
h=0
h=1
Substituting (6) in (5), we have
2 Zn-h
h=1
kn+1 =
1
= -= kn-1,
Vn
(7)
Wn-p
p=1
1
= Vn-1.
kn
Vn+1
%3D
Wn - u
Hence, we see that
1
v1 =
Vo
wo - u
20 - €
1
ko =
Vo =
k =
w-1 + w-2
Z-1 + 2-2
ko
and
at n = 1, k2 = ko and
V2 = Vo,
at n = 2, k3 = k1 and
V3 = V1,
at n = 3, k4 = ko and
V4 = Vo,
at n = 4, kg = k1 and
V5 = V1,
(8)
at n = 2 n, k2n = ko and
V2n = Vo,
at n = 2n + 1, k2n+1 = k1 and
V2n+1 = V1.
Now, from the relations in (6) we get
Wn = µ+ kn (wn-1 + Wn-2)
and zn = €++ Vn (Zn-1 + zn-2).
(9)
Using (8) in (9), we have
w2n = µ+ ko (w2n-1 + W2n-2),
W2n+1 = H + k, (w2n + w2n-1),
(10)
22n = € + vo (z2n-1+ 22n-2),
Z2n+1 = €+ v1 (22n + z2n-1).
介
Transcribed Image Text:In this paper, we solve and study the properties of the following system Wn-p 2 zn-h p=0 E wn-p zZn-h h=1 h=0 Wn+1 = p=1 + u and zn+1 = + €, (4) Zn - € Wn - u where u and e are arbitrary positive real numbers with initial conditions w; and z; for i = -2, –1,0. Theorem 2.1. Let {wn, z,} 2 be a solution of (4), then + V2 – 4 ko kı A - 4 ko ki - kị + ko w2n-2 +B ko ki + V – 4 ko kị $+ v2 – 4 ko ki - V – 4 ko kı 1 +B A ko w2n-1 1- ko + V2 – 4 vo VỊ V2 – 4 vo V - V + vo 22n-2 + D 0 - V1 1 (+ Ve2 – 4 v0 vi + V2 – 4 vo vi gb - V2 – 4 0 vỊ V2 – 4 vo v1 22n-1 +D 2 1- v + vo 1- vo - VI where A, B, C and D are constants defined as ko wo -4 ki = z-1 +z-2 $ = ko + ki + ko k1, w-1 +w-2 20 -e 20 -e w-1 + w-2 = vo+ v1 + o V, z-1 +2-2 wo -H V2 – 4 ko ki 262 – 8 ko ki 4) (V2 – 4 ko kı – 4) +2 A w-2- - 1- ko - ki V2 – 4 ko ki 2 62 - 8 ko ki - ko + k1 (1– ki + ko --) (v - sho ki +e) + 2 (wo - ( ) )]. B 4- w-2 - ko - ki 1- k - ko V2 – 4 vo vI 2 2 - 8 v0 v - vi + vo - vO - V , - v + o 1- vo - V +2 20 V2 – 4 v0 v1 1- v + vo 1-v + vo D E- 2-2 12 - 4 vO +2 2 2 since ko + ki #1 and vo + v 71 for n e N. Proof. To obtain the expressions of the general solutions for (4), we rewrite it in the follow form Zn-h Wn-p Wn+1 - 4 h=1 Zn+1 - € p=1 and (5) 2, - € Wn -H EWn-p 2 Zn-h h=0 p=0 Then, we assume that Wn+1 - u Wn - u kn+1 = 1 k, = Wn-p Wn-p p=0 p=1 (6) Zn+1 - € Zn - € Vn+1 = 1 Vn = 2 E zn-h E zn-h h=0 h=1 Substituting (6) in (5), we have 2 Zn-h h=1 kn+1 = 1 = -= kn-1, Vn (7) Wn-p p=1 1 = Vn-1. kn Vn+1 %3D Wn - u Hence, we see that 1 v1 = Vo wo - u 20 - € 1 ko = Vo = k = w-1 + w-2 Z-1 + 2-2 ko and at n = 1, k2 = ko and V2 = Vo, at n = 2, k3 = k1 and V3 = V1, at n = 3, k4 = ko and V4 = Vo, at n = 4, kg = k1 and V5 = V1, (8) at n = 2 n, k2n = ko and V2n = Vo, at n = 2n + 1, k2n+1 = k1 and V2n+1 = V1. Now, from the relations in (6) we get Wn = µ+ kn (wn-1 + Wn-2) and zn = €++ Vn (Zn-1 + zn-2). (9) Using (8) in (9), we have w2n = µ+ ko (w2n-1 + W2n-2), W2n+1 = H + k, (w2n + w2n-1), (10) 22n = € + vo (z2n-1+ 22n-2), Z2n+1 = €+ v1 (22n + z2n-1). 介
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning