system by either a cheap commercially available air-sourced heat pump with coefficient of performance of just 1.5, or an expensive 100% efficient electrical resistance heater. The loss of Carnot Work Potential (Exergy destruction, or T0Sloss term) is minimum when heat is added by the cheap commercial heat pump.

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter8: Natural Convection
Section: Chapter Questions
Problem 8.46P
icon
Related questions
Question

True or false

  • Heat is transferred to a system by either a cheap commercially available air-sourced heat pump with coefficient of performance of just 1.5, or an expensive 100% efficient electrical resistance heater. The loss of Carnot Work Potential (Exergy destruction, or T0Sloss term) is minimum when heat is added by the cheap commercial heat pump.

 

  • Heat is transferred to a system by either a cheap commercially available air-sourced heat pump with coefficient of performance of just 1.5, or an expensive 100% efficient isothermal heat source. The loss of Carnot Work Potential (Exergy destruction, or T0Sloss term) is minimum when heat is added by the isothermal heat source.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning
Refrigeration and Air Conditioning Technology (Mi…
Refrigeration and Air Conditioning Technology (Mi…
Mechanical Engineering
ISBN:
9781305578296
Author:
John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:
Cengage Learning