The 0.5 m x 1.2 m wall of an industrial furnace is constructed from L = 0.15-m-thick fireclay brick having a thermal conductivity of 1.7 W/m-K. The temperature distribution, at an instant in time, is T(x) = a + bxwhere a = 1400 K and b = -1050 K/m. Determine the heat fluxes, q, and heat rates, q,, at x = 0 and x = L, in W/m2 and W respectively. Do steady-state conditions exist? W/m2 1x=0 i W/m? i W Ix=0 = Ir=L = i W Steady-state conditions exist.

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter3: Transient Heat Conduction
Section: Chapter Questions
Problem 3.13P
icon
Related questions
Question
The 0.5 m x 1.2 m wall of an industrial furnace is constructed from L = 0.15-m-thick fireclay brick having a thermal conductivity of 1.7
W/m-K. The temperature distribution, at an instant in time, is T(x) = a + bxwhere a = 1400 K and b = -1050 K/m. Determine the
heat fluxes, q, and heat rates, q,, at x = 0 and x = L, in W/m2 and W respectively. Do steady-state conditions exist?
W/m2
1x=0
i
W/m?
i
W
Ix=0 =
Ir=L =
i
W
Steady-state conditions
exist.
Transcribed Image Text:The 0.5 m x 1.2 m wall of an industrial furnace is constructed from L = 0.15-m-thick fireclay brick having a thermal conductivity of 1.7 W/m-K. The temperature distribution, at an instant in time, is T(x) = a + bxwhere a = 1400 K and b = -1050 K/m. Determine the heat fluxes, q, and heat rates, q,, at x = 0 and x = L, in W/m2 and W respectively. Do steady-state conditions exist? W/m2 1x=0 i W/m? i W Ix=0 = Ir=L = i W Steady-state conditions exist.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning