The emissivity of the human skin is 97.0 percent. Use 35.0 °C for the skin temperature and approximate the human body by a rectangular block with a height of 1.66 m, a width of 31.0 cm and a length of 21.5 cm. Calculate the power emitted by the human body. Submit Answer Tries 0/20 What is the wavelength of the peak in the spectral distribution for this temperature?

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter28: Quantum Physics
Section: Chapter Questions
Problem 6P
icon
Related questions
Question
The emissivity of the human skin is 97.0 percent. Use 35.0 °C for the skin temperature and approximate the human body by a rectangular block with a height of
1.66 m, a width of 31.0 cm and a length of 21.5 cm.
Calculate the power emitted by the human body.
Submit Answer Tries 0/20
What is the wavelength of the peak in the spectral distribution for this temperature?
Submit Answer Tries 0/20
Fortunately our environment radiates too. The human body absorbs this radiation with an absorbance of 97.0 percent, so we don't lose our internal energy so
quickly. How much power do we absorb when we are in a room where the temperature is 24.0 °C?
Submit Answer Tries 0/20
How much energy does our body lose in one second?
Submit Answer Tries 0/20
Transcribed Image Text:The emissivity of the human skin is 97.0 percent. Use 35.0 °C for the skin temperature and approximate the human body by a rectangular block with a height of 1.66 m, a width of 31.0 cm and a length of 21.5 cm. Calculate the power emitted by the human body. Submit Answer Tries 0/20 What is the wavelength of the peak in the spectral distribution for this temperature? Submit Answer Tries 0/20 Fortunately our environment radiates too. The human body absorbs this radiation with an absorbance of 97.0 percent, so we don't lose our internal energy so quickly. How much power do we absorb when we are in a room where the temperature is 24.0 °C? Submit Answer Tries 0/20 How much energy does our body lose in one second? Submit Answer Tries 0/20
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Wien's Displacement law
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning