The gas law for an ideal gas at absolute temperature 7 (in kelvins), pressure P (in atmospheres), and volume V (in liters) is PV = nRT, where n is the number of moles of the gas and R = 0.0821 is the gas constant. Suppose that, at a certain instant, P = 9.0 atm and is increasing at a rate of 0.15 atm/min and V 13 L and is decreasing at a rate of 0.17 L/min. Find the rate of change of T with respect to time at that instant if n = 10 mol. (Round your answer to four decimal places.) T0512 x K/min dt

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter16: Temperature And The Kinetic Theory Of Gases
Section: Chapter Questions
Problem 8OQ
icon
Related questions
Question
The gas law for an ideal gas at absolute temperature T (in kelvins), pressure P (in atmospheres), and volume V (in liters) is PV = nRT, where n is the number of moles of the gas and R = 0.0821 is the gas constant. Suppose that, at a certain instant, P = 9.0 atm and is
increasing at a rate of 0.15 atm/min and V = 13 L and is decreasing at a rate of 0.17 L/min. Find the rate of change of T with respect to time at that instant if n = 10 mol. (Round your answer to four decimal places.)
dT=0.512
dt
X K/min
Transcribed Image Text:The gas law for an ideal gas at absolute temperature T (in kelvins), pressure P (in atmospheres), and volume V (in liters) is PV = nRT, where n is the number of moles of the gas and R = 0.0821 is the gas constant. Suppose that, at a certain instant, P = 9.0 atm and is increasing at a rate of 0.15 atm/min and V = 13 L and is decreasing at a rate of 0.17 L/min. Find the rate of change of T with respect to time at that instant if n = 10 mol. (Round your answer to four decimal places.) dT=0.512 dt X K/min
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
First law of thermodynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning