The Gilles & Retzbach model of a distillation column, the system model includes the dynamics of a boiler, is driven by the inputs of steam flow and the flow rate of the vapour side stream, and the measurements are the temperature changes at two different locations along the column. The state space model is given by: X = 0 00 -30.3 0.00012 -6.02 0 0 0 -3.77 0 0 0 -2.80 0 0 Is the system?: a. unstable b. b. not unstable x+ 6.15 0 0 0 c. not asymptotically stable d. asymptotically stable 0 0 3.04 0.052 u y = 0 0 0 -7.3 0 0 -25.0 X

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter6: Forced Convection Over Exterior Surfaces
Section: Chapter Questions
Problem 6.32P
icon
Related questions
Question
For the model defined in Question 1, is the system controllable?
a. Yes
b. No
Transcribed Image Text:For the model defined in Question 1, is the system controllable? a. Yes b. No
The
Gilles & Retzbach model of a distillation column, the system model includes the dynamics of a boiler, is driven by the inputs of steam flow and
the flow rate of the vapour side stream, and the measurements are the temperature changes at two different locations along the column. The state
space model is given by:
x =
0 00
-30.3
0.00012 -6.02 0 0
0 -3.77 00
0
-2.80 0 0
Is the system?:
a. unstable
b.
C.
not unstable
x+
6.15
0
0
0
0
3.04
0 0.052
not asymptotically stable
d. asymptotically stable
-1
u y =
0
0
0
0
-7.3
0
0
-25.0
X
Transcribed Image Text:The Gilles & Retzbach model of a distillation column, the system model includes the dynamics of a boiler, is driven by the inputs of steam flow and the flow rate of the vapour side stream, and the measurements are the temperature changes at two different locations along the column. The state space model is given by: x = 0 00 -30.3 0.00012 -6.02 0 0 0 -3.77 00 0 -2.80 0 0 Is the system?: a. unstable b. C. not unstable x+ 6.15 0 0 0 0 3.04 0 0.052 not asymptotically stable d. asymptotically stable -1 u y = 0 0 0 0 -7.3 0 0 -25.0 X
Expert Solution
steps

Step by step

Solved in 4 steps with 2 images

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning