College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
The minimum pressure require to force the blood of density 1.04 g cm-3 from the heart to the top of the head (vertical distance = 60 cm) is:
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The flow rate of blood through a 2.25 ✕ 10−6 m radius capillary is 3.80 ✕ 10−9 cm3/s. (a) What is the speed of the blood flow (in cm/s)? (This small velocity allows time for diffusion of materials to and from the blood.) (b) Assuming all the blood in the body passes through capillaries, how many of them must there be to carry a total flow of 80.0 cm3/s? (The large number obtained is an overestimate, but it is still reasonable.)arrow_forwardUnder normal circumstances, the vitreous humor, a jelly-like substance in the main part of the eye, exerts a pressure of up to 24 mmmm of mercury that maintains the shape of the eye. If blockage of the drainage duct for aqueous humor causes this pressure to increase to about 50 mm of mercury, the condition is called glaucoma. What is the increase in the total force (in newtons) on the walls of the eye if the pressure increases from 24 mm to 50 mm of mercury? We can quite accurately model the eye as a sphere 2.2 cm in diameter. Express your answer in newtons.arrow_forwardAt a given instant, the blood pressure in the heart is 1.7 x 104 Pa. If an artery in the brain is 0.46 m above the heart, what is the pressure in the artery? Ignore any pressure changes due to blood flow.arrow_forward
- Water enters a pipe with a diameter of 2.0 cm at a speed of 15.0 m/s. At what velocity will it come out the other end if the pipe has narrowed to a diameter of 1.5 cm? If the narrow end of the pipe is 1.0 m above the wide end, and the water enters the pipe under a pressure of 5.0 atm, what would be the water pressure when exiting the narrow end?arrow_forwardSuppose you measure a standing person’s blood pressure by placing the cuff on his leg 0.495 m below the heart. For this problem, assume that there is no loss of pressure due to resistance in the circulatory system (a reasonable assumption, since major arteries are large). The density of blood is 1.05 × 103 kg/m3. Calculate the systolic pressure you would observe, in units of mm Hg, if the pressure at the heart was 120 over 80 mm Hg. Note that the to (and greater) number is systolic pressure. Ps? Calculate the diastolic pressure you would observe, in unites of mm Hg, if the pressure at heart was 120 overc80cmm Hg. Note that the bottom (smaller) number is the diastolic pressure.Pd?arrow_forwardHow tall must a water-filled manometer be to measure blood pressures as high as 300 mm Hg?arrow_forward
- At a given instant, the blood pressure in the heart is 1.4 x 10^4 Pa. If an artery in the brain is 0.49m above the heart, what is the pressure in the artery? Ignore any pressure changes due to blood flow.arrow_forwardSuppose you measure a standing person’s blood pressure by placing the cuff on his leg 0.525 m below the heart. For this problem, assume that there is no loss of pressure due to resistance in the circulatory system (a reasonable assumption, since major arteries are large). The density of blood is 1.05×103 kg/m3 a. Calculate the systolic pressure you would observe, in units of mm Hgmm Hg, if the pressure at the heart was 120 over 80 mm Hg. Note that the top (and greater) number is the systolic pressure. b. Calculate the diastolic pressure you would observe, in units of mm Hgmm Hg, if the pressure at the heart was 120 over 80 mm Hg. Note that the bottom (smaller) number is the diastolic pressure.arrow_forwardAt 20°C, the viscosity of water is 1.0x10-3 Pa-s and the viscosity of molasses is 51 Pa-s. Consider two tubes of the same length L, with fixed pressure difference Ap across each pipe. If water flows through Pipe 1 and molasses flows through Pipe 2, and both have the same flow rate Q, what is the ratio of the radius of Pipe 2 to Pipe 1?arrow_forward
- A fusiform aneurysm bulges or balloons out an artery on all sides (pictured below). If this aneurysm occurs in an aorta, the internal radius may increase from r₁ = 1.1 cm in the normal, healthy section to 12= = 2.2 cm in the diseased section (while staying at the same vertical height). The speed of blood m flow is v₁ = 0.42 in the normal section and the gauge pressure P₁ is 99.98 mmHg. The density of 1 S blood is 1060 kg m³ Fusiform Aneurysm Image from: http://www.okclipart.com/Fusiform-Aneurysm-Clip-Art30koqyaskv/ (a) Calculate the speed of blood v2 in the aneurysm. Answer to two significant figures. Think: What equations dictating the flow through the valve are valid, equation of continuity, Bernoulli or Poiseuille? What simplifications should you make regarding the blood flow. m V₂ = S (b) Calculate the pressure gradient AP = P aneurysm healthy aorta from the healthy aorta into the aneurysm. Think: What equations dictating the flow through the valve are valid, equation of…arrow_forwardWhen you hold your hands at your sides, you may have noticed that the veins sometimes bulge—the height difference between your heart and your hands produces increased pressure in the veins. The same thing happens in the arteries. Estimate the distance that your hands are below your heart. If the average arterial pressure at your heart is a typical 100 mm Hg, what is the average arterial pressure in your hands when they are held at your side?arrow_forwardIn an industrial cooling process, water is circulated through a system. If water is pumped with a speed of 5.20 m/s under a pressure of 5.00*10^5 Pa from the first floor through a 3.80-cm diameter pipe, what will be the pressure on the next floor 3.50 m above in a pipe with a diameter of 3.00 cm?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON