The pump-turbine system in the Figure draws water from the upper reservoir in the daytime to produce power for a city. At night, it pumps water from lower to upper reservoirs to restore the situation. For a design flow rate of 15,000 gal/min in either direction, the friction head loss is 17 ft. Estimate the power in kW: (a) extracted by the turbine and (b) delivered by the 1- Select coordinates and points 1 and 2 2- Write down your assumptions 3- Apply Energy Eq. and start finding P, V, and z for points 1 and 2 as well as head (h) values 4- Solve for unknown (1) Z₁ = 150 ft pump. Water at 20°C Pump- turbine (2) 2 Z₂ = 25 ft P1 V² + pg 2g P2 V + +Z2+hfriction + hTurbine - hpump [pressure head] 29 +Z1 = pg

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
The pump-turbine system in the Figure draws water from the upper reservoir in the daytime to
produce power for a city. At night, it pumps water from lower to upper reservoirs to restore
the situation. For a design flow rate of 15,000 gal/min in either direction, the friction head loss
is 17 ft. Estimate the power in kW: (a) extracted by the turbine and (b) delivered by the
1- Select coordinates and points 1 and 2
2- Write down your assumptions
3- Apply Energy Eq. and start finding P, V, and z for
points 1 and 2 as well as head (h) values
4- Solve for unknown
(1)
Z₁ = 150 ft
pump.
Water at 20°C
Pump-
turbine
(2)
2
Z₂ = 25 ft
P1 V²
+
pg 2g
P2 V
+
+Z2+hfriction + hTurbine - hpump [pressure head]
29
+Z1 =
pg
Transcribed Image Text:The pump-turbine system in the Figure draws water from the upper reservoir in the daytime to produce power for a city. At night, it pumps water from lower to upper reservoirs to restore the situation. For a design flow rate of 15,000 gal/min in either direction, the friction head loss is 17 ft. Estimate the power in kW: (a) extracted by the turbine and (b) delivered by the 1- Select coordinates and points 1 and 2 2- Write down your assumptions 3- Apply Energy Eq. and start finding P, V, and z for points 1 and 2 as well as head (h) values 4- Solve for unknown (1) Z₁ = 150 ft pump. Water at 20°C Pump- turbine (2) 2 Z₂ = 25 ft P1 V² + pg 2g P2 V + +Z2+hfriction + hTurbine - hpump [pressure head] 29 +Z1 = pg
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY