Two particles are moving in the x-y plane. Particle #1 has a mass m, = 6.40 kg and is located (at any time) by the position vector r, (t) = [0.300 m + (2.00 m/s?)t?jî + 0.200 mj. Particle #2 has a mass m, = 9.00 kg and is located (at any time) by the position vector r,(t) = 0.100 mî + [0.300 m + (0.500 m/s)t + (1.50 m/s?)t?jj. Determine the following at the time t = 1.00 s. (Express your answers in vector form.) (a) location of the center of mass r(t = 1.00 s) = m (b) velocity of the center of mass Vem (t = 1.00 s) = m/s v (c) acceleration of the center of mass a(t = 1.00 s) = m/s?

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter8: Momentum And Collisions
Section: Chapter Questions
Problem 31P
icon
Related questions
Topic Video
Question
100%
Two particles are moving in the x-y plane. Particle #1 has a mass m, = 6.40 kg and is located (at any time) by the position vector r, (t) = [0.300 m + (2.00 m/s?)t?jî + 0.200 mj. Particle #2 has a mass
m, = 9.00 kg and is located (at any time) by the position vector r,(t) = 0.100 mî + [0.300 m + (0.500 m/s)t + (1.50 m/s?)t?jj. Determine the following at the time t = 1.00 s. (Express your answers in
vector form.)
(a) location of the center of mass
r(t = 1.00 s) =
m
(b) velocity of the center of mass
Vem (t = 1.00 s) =
m/s
v
(c) acceleration of the center of mass
a(t = 1.00 s) =
m/s?
Transcribed Image Text:Two particles are moving in the x-y plane. Particle #1 has a mass m, = 6.40 kg and is located (at any time) by the position vector r, (t) = [0.300 m + (2.00 m/s?)t?jî + 0.200 mj. Particle #2 has a mass m, = 9.00 kg and is located (at any time) by the position vector r,(t) = 0.100 mî + [0.300 m + (0.500 m/s)t + (1.50 m/s?)t?jj. Determine the following at the time t = 1.00 s. (Express your answers in vector form.) (a) location of the center of mass r(t = 1.00 s) = m (b) velocity of the center of mass Vem (t = 1.00 s) = m/s v (c) acceleration of the center of mass a(t = 1.00 s) = m/s?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 4 images

Blurred answer
Knowledge Booster
Momentum
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning