Using the trial function u¹(x) = a sin(x) and weighting function w¹(x) = b sin(x) find an approximate solution to the following boundary value problems by determining the value of coefficient a. For each one, also find the exact solution using Matlab and plot the exact and approximate solutions. (One point each for: (i) finding a, (ii) finding the exact solution, and (iii) plotting the solution) a. - 2 = 0 U₁xx' u(0) = 0 u(1) = 0 b. Modify the trial function and find an approximation for the following boundary value problem. (Hint: you will need to add an extra term to the function to make it satisfy the boundary conditions.) U₁xx- 2=0 u(0) = 1 u(1) = 0

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter4: Numerical Analysis Of Heat Conduction
Section: Chapter Questions
Problem 4.7P
icon
Related questions
Question
3. Using the trial function uh(x) = a sin(x) and weighting function wh(x) = b sin(x) find
an approximate solution to the following boundary value problems by determining the value
of coefficient a. For each one, also find the exact solution using Matlab and plot the exact
and approximate solutions. (One point each for: (i) finding a, (ii) finding the exact solution,
and (iii) plotting the solution)
a.
(U₁xx - 2 = 0
u(0) = 0
u(1) = 0
b. Modify the trial function and find an approximation for the following boundary value
problem. (Hint: you will need to add an extra term to the function to make it satisfy
the boundary conditions.)
(U₁xx - 2 = 0
u(0) = 1
u(1) = 0
Transcribed Image Text:3. Using the trial function uh(x) = a sin(x) and weighting function wh(x) = b sin(x) find an approximate solution to the following boundary value problems by determining the value of coefficient a. For each one, also find the exact solution using Matlab and plot the exact and approximate solutions. (One point each for: (i) finding a, (ii) finding the exact solution, and (iii) plotting the solution) a. (U₁xx - 2 = 0 u(0) = 0 u(1) = 0 b. Modify the trial function and find an approximation for the following boundary value problem. (Hint: you will need to add an extra term to the function to make it satisfy the boundary conditions.) (U₁xx - 2 = 0 u(0) = 1 u(1) = 0
Expert Solution
steps

Step by step

Solved in 3 steps with 10 images

Blurred answer
Knowledge Booster
Thermodynamic Relations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning