Very pure liquid water can be subcooled at atmospheric pressure to temperatures well below 0 °C. Assume that 1 kg has been cooled as a liquid to -6 °C. A small ice crystal (of negligible mass) is added to “seed” the subcooled liquid. If the subsequent change occurs adiabatically at atmospheric pressure, what fraction of the system freezes and what is the final temperature? What is ΔStotal for the process, and what is its irreversible feature? The latent heat of fusion of water at 0 °C is 333.4 J/g, and the specific heat of subcooled liquid water is 4.226 J/g °C.

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter8: Natural Convection
Section: Chapter Questions
Problem 8.3P
icon
Related questions
Question

Very pure liquid water can be subcooled at atmospheric pressure to temperatures well below 0 °C.  Assume that 1 kg has been cooled as a liquid to -6 °C.  A small ice crystal (of negligible mass) is added to “seed” the subcooled liquid.  If the subsequent change occurs adiabatically at atmospheric pressure, what fraction of the system freezes and what is the final temperature?  What is ΔStotal for the process, and what is its irreversible feature? The latent heat of fusion of water at 0 °C is 333.4 J/g, and the specific heat of subcooled liquid water is 4.226 J/g °C.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Properties of Pure Substances
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning