Water is being pumped the through one inch diameter piping arrangement to a higher elevation (5 meters up). Assume incompressible fluid conditions and some heat losses to the surroundings. At the inlet water pressure is 1 bar, temperature 15C, and volumetric flow rate is 0.02 m3/s. At the exit pressure is 2.2 bar, temperature is 10C and velocity of the stream is 40 m/s. Determine: a.Density of the inlet stream using NIST tables.  b.Mass flow rate [kg/s] c.Determine h2 from known p2 and T2 using NIST tables d.Find heat rate removed from Q=m(h1-h2) Use Energy Balance Equation with enthalpy difference and in the units of kW to find pumping power in kW. NOTE: The heat is removed from the system, so it should be negative in your equation!

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter6: Forced Convection Over Exterior Surfaces
Section: Chapter Questions
Problem 6.15P
icon
Related questions
Question
  1.  Water is being pumped the through one inch diameter piping arrangement to a higher elevation (5 meters up). Assume incompressible fluid conditions and some heat losses to the surroundings. At the inlet water pressure is 1 bar, temperature 15C, and volumetric flow rate is 0.02 m3/s. At the exit pressure is 2.2 bar, temperature is 10C and velocity of the stream is 40 m/s.

Determine:

a.Density of the inlet stream using NIST tables. 

b.Mass flow rate [kg/s]

c.Determine h2 from known p2 and T2 using NIST tables

d.Find heat rate removed from Q=m(h1-h2)

  • Use Energy Balance Equation with enthalpy difference and in the units of kW to find pumping power in kW. NOTE: The heat is removed from the system, so it should be negative in your equation!

 

 

 

 

 

 

 

 

 

 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 1 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning