Water vapor at a temperature of 120 ° C flows through a stainless steel pipe (k = 57 W / mK). The inner diameter of the pipe is 47 mm, the outer diameter is 50 mm, and the length is 100 m. The heat transfer coefficient between the water vapor and the pipe wall is 200 W / m²K, and the heat transfer coefficient between the outer surface of the pipe and the ambient air is 25 W / m_K. The outdoor air temperature is 10 ° C. Find the thermal conductivity coefficient of the insulation material, since it is desired to insulate with an insulation material with a layer thickness of 50 mm in order to reduce the loss of heat from the pipe by 60%.

Refrigeration and Air Conditioning Technology (MindTap Course List)
8th Edition
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Chapter2: Matter And Energy
Section: Chapter Questions
Problem 18RQ: Describe Dalton's law as it relates to a confined mixture of non-reactive gases.
icon
Related questions
Question

Water vapor at a temperature of 120 ° C flows through a stainless steel pipe (k = 57 W / mK). The inner diameter of the pipe is 47 mm, the outer diameter is 50 mm, and the length is 100 m. The heat transfer coefficient between the water vapor and the pipe wall is 200 W / m²K, and the heat transfer coefficient between the outer surface of the pipe and the ambient air is 25 W / m_K. The outdoor air temperature is 10 ° C. Find the thermal conductivity coefficient of the insulation material, since it is desired to insulate with an insulation material with a layer thickness of 50 mm in order to reduce the loss of heat from the pipe by 60%.

Izalasyon
Buhar
T3
T
Transcribed Image Text:Izalasyon Buhar T3 T
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Conduction
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Refrigeration and Air Conditioning Technology (Mi…
Refrigeration and Air Conditioning Technology (Mi…
Mechanical Engineering
ISBN:
9781305578296
Author:
John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:
Cengage Learning