Q. Steam in a heating system flows through tubes whose outer diameter is 5 cm and whose walls are maintained at a temperature of 130 °C. Circular aluminum alloy 2024-T6 fins k = 186 W/m.K of outer diameter 6 cm and constant thickness 1 mm are attached to the tube. The space between the fins is 3 mm, and thus there are 250 fins per length of the tube. Heat is transferred to the surrounding air at 25 C, with a heat transfer coefficient of 40W/m².K. Determine: 1. The increase in heat transfer from the tube per meter of its length as result of adding fins. 2. The efficiency of the fins. 3. Temperature at mid-point of the fins. Note: Equations and any other data required can be taken from textbook/handbook. 130°C 25°C

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter7: Forced Convection Inside Tubes And Ducts
Section: Chapter Questions
Problem 7.55P
icon
Related questions
Question

solve

  1. Temperature at mid-point of the fins.
Q. Steam in a heating system flows through tubes whose outer diameter is 5 cm and whose walls
are maintained at a temperature of 130 °C. Circular aluminum alloy 2024-T6 fins k = 186 W/m.K
of outer diameter 6 cm and constant thickness 1 mm are attached to the tube. The space between
the fins is 3 mm, and thus there are 250 fins per length of the tube. Heat is transferred to the
surrounding air at 25 °C, with a heat transfer coefficient of 40W/m².K. Determine:
1. The increase in heat transfer from the tube per meter of its length as result of adding fins.
2. The efficiency of the fins.
3. Temperature at mid-point of the fins.
Note: Equations and any other data required can be taken from textbook/handbook.
130°C
25°C
Transcribed Image Text:Q. Steam in a heating system flows through tubes whose outer diameter is 5 cm and whose walls are maintained at a temperature of 130 °C. Circular aluminum alloy 2024-T6 fins k = 186 W/m.K of outer diameter 6 cm and constant thickness 1 mm are attached to the tube. The space between the fins is 3 mm, and thus there are 250 fins per length of the tube. Heat is transferred to the surrounding air at 25 °C, with a heat transfer coefficient of 40W/m².K. Determine: 1. The increase in heat transfer from the tube per meter of its length as result of adding fins. 2. The efficiency of the fins. 3. Temperature at mid-point of the fins. Note: Equations and any other data required can be taken from textbook/handbook. 130°C 25°C
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Joining Processes
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning