Water vapor enters a turbine with a mass flow rate of 3 kg/s, and at a temperature and pressure of 500°C and 1 MPa, respectively. The heat loss inside the turbine is 250 kW and the steam leaves the turbine at a temperature and pressure of 150°C and 100 kPa. Neglect any changes in the velocity or the elevation. The work output of the turbine is used to operate a heat pump whose COP value is 2. Determine the rate of heat removal from the sink (1) and the rate of heat rejection to the source (2) of this heat pump. a. 3715 kW (removal), 1857.5 kW (rejection) b. 1857.5 kW (removal), 3500 kW (rejection) c. 1857.5 kW (removal), 3715 kW (rejection) d. 1500 kW (removal), 3715 kW (rejection)

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Water vapor enters a turbine with a mass flow rate of 3 kg/s, and at a temperature and pressure of 500°C and 1 MPa, respectively. The heat loss inside the turbine is
250 kW and the steam leaves the turbine at a temperature and pressure of 150°C and 100 kPa. Neglect any changes in the velocity or the elevation. The work output
of the turbine is used to operate a heat pump whose COP value is 2. Determine the rate of heat removal from the sink (1) and the rate of heat rejection to the
source (2) of this heat pump.
a. 3715 kW (removal), 1857.5 kW (rejection)
b. 1857.5 kW (removal), 3500 kW (rejection)
c. 1857.5 kW (removal), 3715 kW (rejection)
d. 1500 kW (removal), 3715 kW (rejection)
Transcribed Image Text:Water vapor enters a turbine with a mass flow rate of 3 kg/s, and at a temperature and pressure of 500°C and 1 MPa, respectively. The heat loss inside the turbine is 250 kW and the steam leaves the turbine at a temperature and pressure of 150°C and 100 kPa. Neglect any changes in the velocity or the elevation. The work output of the turbine is used to operate a heat pump whose COP value is 2. Determine the rate of heat removal from the sink (1) and the rate of heat rejection to the source (2) of this heat pump. a. 3715 kW (removal), 1857.5 kW (rejection) b. 1857.5 kW (removal), 3500 kW (rejection) c. 1857.5 kW (removal), 3715 kW (rejection) d. 1500 kW (removal), 3715 kW (rejection)
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Power Plant Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY