When you voice the vowel sound in “hat,” you narrow the opening where your throat opens into the cavity of your mouth so that your vocal tract appears as two connected tubes. The first is in your throat, closed at the vocal cords and open at the back of the mouth. The second is the mouth itself, open at the lips and closed at the back of the mouth—a different conditionthan for the throat because of the relatively larger size of the cavity. The corresponding formant frequencies are 800 Hz (for the throat) and 1500 Hz (for the mouth). What are the lengths of these two cavities? Assume a sound speed of 350 m/s.

College Physics
1st Edition
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:Paul Peter Urone, Roger Hinrichs
Chapter17: Physics Of Hearing
Section: Chapter Questions
Problem 11CQ: Why can a hearing test show that your threshold of hearing is 0 dB at 250 Hz, when Figure 17.37...
icon
Related questions
icon
Concept explainers
Question

When you voice the vowel sound in “hat,” you narrow the opening where your throat opens into the cavity of your mouth so that your vocal tract appears as two connected tubes. The first is in your throat, closed at the vocal cords and open at the back of the mouth. The second is the mouth itself, open at the lips and closed at the back of the mouth—a different condition
than for the throat because of the relatively larger size of the cavity. The corresponding formant frequencies are 800 Hz (for the throat) and 1500 Hz (for the mouth). What are the lengths of these two cavities? Assume a sound speed of 350 m/s.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Properties of sound
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College