While a person is walking, his arms swing through approximately a 45 ∘ angle in 0.60 s. As a reasonable approximation, we can assume that the arm moves with constant speed during each swing. A typical arm is 70.0 cm long, measured from the shoulder joint. part A) What is the acceleration of a 1.6 g drop of blood in the fingertips at the bottom of the swing?

University Physics Volume 1
18th Edition
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:William Moebs, Samuel J. Ling, Jeff Sanny
Chapter13: Gravitation
Section: Chapter Questions
Problem 2CQ: In the law of universal gravitation, Newton assumed that the force was proportional to the product...
icon
Related questions
Question

While a person is walking, his arms swing through approximately a 45 ∘ angle in 0.60 s. As a reasonable approximation, we can assume that the arm moves with constant speed during each swing. A typical arm is 70.0 cm long, measured from the shoulder joint.

part A)

What is the acceleration of a 1.6 g drop of blood in the fingertips at the bottom of the swing?
Express your answer with the appropriate units.
Part B)
Find the force that the blood vessel must exert on the drop of blood in part A.
Express your answer with the appropriate units.
 
part C)
What force would the blood vessel exert if the arm were not swinging?
Express your answer with the appropriate units.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning