You want to increase the heat flux dissipated by a tube, OD = 2.5 cm, by placing cooling fins circular. The thickness, height and thermal conductivity of the fins are: 1mm, 1.25 cm and 160 W/mC, respectively. The fins are equally spaced such that there are 100 fins for every meter of tube length. If the The outer surface temperature of the tube is 170 C, the ambient temperature is 30 C, and the transfer coefficient of heat is h = 200 W/m2K, determine the increase (percentage) in the heat flux dissipated by the tube by placing the cooling fins. Take the efficiency of each fin to be 85%.

Refrigeration and Air Conditioning Technology (MindTap Course List)
8th Edition
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Chapter1: Heat, Temperature, And Pressure
Section: Chapter Questions
Problem 17RQ: Convert 22C to Fahrenheit.
icon
Related questions
Question
You want to increase the heat flux dissipated by a tube, OD = 2.5 cm, by placing cooling fins circular. The thickness, height and thermal conductivity of the fins are: 1mm, 1.25 cm and 160 W/mC, respectively. The fins are equally spaced such that there are 100 fins for every meter of tube length. If the The outer surface temperature of the tube is 170 C, the ambient temperature is 30 C, and the transfer coefficient of heat is h = 200 W/m2K, determine the increase (percentage) in the heat flux dissipated by the tube by placing the cooling fins. Take the efficiency of each fin to be 85%.
1 mm
160 W/mK
9 mm
4
1.25 cm
1.25 cm
30 C
170 °C
200 W/m²
1.25 cm
2.5 cm
Transcribed Image Text:1 mm 160 W/mK 9 mm 4 1.25 cm 1.25 cm 30 C 170 °C 200 W/m² 1.25 cm 2.5 cm
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Conduction
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Refrigeration and Air Conditioning Technology (Mi…
Refrigeration and Air Conditioning Technology (Mi…
Mechanical Engineering
ISBN:
9781305578296
Author:
John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:
Cengage Learning
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning