   Chapter 10.4, Problem 34E

Chapter
Section
Textbook Problem

# Find the area of the region that lies inside both curves.34. r = a sin θ, r = b cos θ, a > 0, b > 0

To determine

To Find: The area of the region that lies inside both curves.

Explanation

Given:

The given polar equations are as below.

r=asinθ (1)

r=bcosθ (2)

Calculation:

Calculate the value of r using the equation (1).

r=asinθ

Substitute 0 for θ and 2 for a in the equation (1).

r=2sin0=0

Calculate the value of x.

x=rcosθ

Substitute 0 for r and 0 for θ .

x=0×cos(0×π180)=0

Calculate the value of y.

y=rsinθ

Substitute 0 for r and 0 for θ .

y=0×sin(0×π180)=0

Similarly calculate the values of x and y using the value of θ from 0 to 360 .

Tabulate the values of x and y in table (1).

 θ r=asinθ x=rcosθ y=rsinθ 0.00 0.00 0.00 0.00 10.00 0.35 0.34 0.06 20.00 0.68 0.64 0.23 30.00 1.00 0.87 0.50 40.00 1.29 0.98 0.83 50.00 1.53 0.98 1.17 60.00 1.73 0.87 1.50 70.00 1.88 0.64 1.77 80.00 1.97 0.34 1.94 90.00 2.00 0.00 2.00 100.00 1.97 -0.34 1.94 110.00 1.88 -0.64 1.77 120.00 1.73 -0.87 1.50 130.00 1.53 -0.98 1.17 140.00 1.29 -0.98 0.83 150.00 1.00 -0.87 0.50 160.00 0.68 -0.64 0.23 170.00 0.35 -0.34 0.06 180.00 0.00 0.00 0.00 190.00 -0.35 0.34 0.06 200.00 -0.68 0.64 0.23 210.00 -1.00 0.87 0.50 220.00 -1.29 0.98 0.83 230.00 -1.53 0.98 1.17 240.00 -1.73 0.87 1.50 250.00 -1.88 0.64 1.77 260.00 -1.97 0.34 1.94 270.00 -2.00 0.00 2.00 280.00 -1.97 -0.34 1.94 290.00 -1.88 -0.64 1.77 300.00 -1.73 -0.87 1.50 310.00 -1.53 -0.98 1.17 320.00 -1.29 -0.98 0.83 330.00 -1.00 -0.87 0.50 340.00 -0.68 -0.64 0.23 350.00 -0.35 -0.34 0.06 360.00 0.00 0.00 0.00

Calculate the value of r using the equation (2).

r=bcosθ

Substitute 0 for θ and 1 for b in the equation (2).

r=1cos0=1

Calculate the value of x.

x=rcosθ

Substitute 1 for r and 0 for θ .

x=rcosθ=1×cos(0×π180)=1

Calculate the value of y.

y=rsinθ

Substitute 1 for r and 0 for θ .

y=1×sin(0×π180)=0

Similarly, calculate the values of x and y using the value of θ from 0 to 360 .

Tabulate the values of x and y in table (2).

 θ r=bcosθ x=rcosθ y=rsinθ 0.00 1.00 1.00 0.00 10.00 0.98 0.97 0.17 20.00 0.94 0.88 0.32 30.00 0.87 0.75 0.43 40.00 0.77 0.59 0.49 50.00 0.64 0.41 0.49 60.00 0.50 0.25 0.43 70.00 0.34 0.12 0.32 80.00 0.17 0.03 0.17 90.00 0.00 0.00 0.00 100.00 -0.17 0.03 -0.17 110.00 -0.34 0.12 -0.32 120.00 -0.50 0.25 -0.43 130.00 -0.64 0.41 -0.49 140.00 -0.77 0.59 -0.49 150.00 -0.87 0.75 -0.43 160.00 -0.94 0.88 -0.32 170.00 -0.98 0.97 -0.17 180.00 -1.00 1.00 0.00 190.00 -0.98 0.97 0.17 200.00 -0.94 0.88 0.32 210.00 -0.87 0.75 0.43 220.00 -0.77 0.59 0.49 230.00 -0.64 0.41 0.49 240.00 -0.50 0.25 0.43 250.00 -0.34 0.12 0.32 260.00 -0.17 0.03 0.17 270.00 0.00 0.00 0.00 280.00 0.17 0.03 -0.17 290.00 0.34 0.12 -0.32 300.00 0.50 0.25 -0.43 310.00 0.64 0.41 -0.49 320.00 0.77 0.59 -0.49 330.00 0.87 0.75 -0.43 340.00 0.94 0.88 -0.32 350.00 0.98 0.97 -0.17 360.00 1.00 1.00 0.00

Graph:

The graph is plotted for x and y using the table (1) and (2) in figure (1).

Calculate the value of θ .

Equate the given polar equation (1) and (2).

asinθ=bcosθsinθcosθ=batanθ=baθ=tan1(ba)

Refer figure (1), the curves intersect at the pole when θ=0 for the sine one and θ=π2 for the cosine one.

From the points θ=0 and r=asinθ curve starts at the pole then intersects with the r=bcosθ

### Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

#### The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

#### Change 1540 mm to m.

Elementary Technical Mathematics

#### Given: AEBDEC AEDE Prove: AEBDEC

Elementary Geometry For College Students, 7e

#### Evaluate the integral. 29. 0xsinxcosxdx

Single Variable Calculus: Early Transcendentals

#### The directrix of the conic given by is:

Study Guide for Stewart's Multivariable Calculus, 8th 