BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042

Solutions

Chapter
Section
BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042
Textbook Problem

Find the derivatives of the functions in Problems 1-34.

y = e 2 x 2 ln ( 4 x )

To determine

To calculate: The derivative of function, y=e2x2ln(4x).

Explanation

Given Information:

The function provided is y=e2x2ln(4x).

Formula used:

According to the property of derivatives, if f(x)=cu(x), where, c is a constant and u(x) is a differentiable function of x, then,

f(x)=cu(x)

According to the property of derivatives, for a function, y=eu, where, u is a differentiable function of x,

dydx=eududx

According to the product rule, for a function of form, y=fg, the derivative is

ddx(fg)=gf+fg

According to the power rule, if y=xn, then,

dydx=nxn1

If y=ex where, u is a differentiable function of x,

dydx=ex

Calculation:

Consider the function provided,

y=e2x2ln(4x)

Apply the product rule and differentiate both sides with respect to x,

dydx=ddx(e2x2ln(4x))=e

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 11 Solutions

Show all chapter solutions add
Sect-11.1 P-7ESect-11.1 P-8ESect-11.1 P-9ESect-11.1 P-10ESect-11.1 P-11ESect-11.1 P-12ESect-11.1 P-13ESect-11.1 P-14ESect-11.1 P-15ESect-11.1 P-16ESect-11.1 P-17ESect-11.1 P-18ESect-11.1 P-19ESect-11.1 P-20ESect-11.1 P-21ESect-11.1 P-22ESect-11.1 P-23ESect-11.1 P-24ESect-11.1 P-25ESect-11.1 P-26ESect-11.1 P-27ESect-11.1 P-28ESect-11.1 P-29ESect-11.1 P-30ESect-11.1 P-31ESect-11.1 P-32ESect-11.1 P-33ESect-11.1 P-34ESect-11.1 P-35ESect-11.1 P-36ESect-11.1 P-37ESect-11.1 P-38ESect-11.1 P-39ESect-11.1 P-40ESect-11.1 P-41ESect-11.1 P-42ESect-11.1 P-43ESect-11.1 P-44ESect-11.1 P-45ESect-11.1 P-46ESect-11.1 P-47ESect-11.1 P-48ESect-11.1 P-49ESect-11.1 P-50ESect-11.1 P-51ESect-11.1 P-52ESect-11.2 P-1CPSect-11.2 P-2CPSect-11.2 P-3CPSect-11.2 P-4CPSect-11.2 P-1ESect-11.2 P-2ESect-11.2 P-3ESect-11.2 P-4ESect-11.2 P-5ESect-11.2 P-6ESect-11.2 P-7ESect-11.2 P-8ESect-11.2 P-9ESect-11.2 P-10ESect-11.2 P-11ESect-11.2 P-12ESect-11.2 P-13ESect-11.2 P-14ESect-11.2 P-15ESect-11.2 P-16ESect-11.2 P-17ESect-11.2 P-18ESect-11.2 P-19ESect-11.2 P-20ESect-11.2 P-21ESect-11.2 P-22ESect-11.2 P-23ESect-11.2 P-24ESect-11.2 P-25ESect-11.2 P-26ESect-11.2 P-27ESect-11.2 P-28ESect-11.2 P-29ESect-11.2 P-30ESect-11.2 P-31ESect-11.2 P-32ESect-11.2 P-33ESect-11.2 P-34ESect-11.2 P-35ESect-11.2 P-36ESect-11.2 P-37ESect-11.2 P-38ESect-11.2 P-39ESect-11.2 P-40ESect-11.2 P-41ESect-11.2 P-42ESect-11.2 P-43ESect-11.2 P-44ESect-11.2 P-45ESect-11.2 P-46ESect-11.2 P-47ESect-11.2 P-48ESect-11.2 P-49ESect-11.2 P-50ESect-11.2 P-51ESect-11.2 P-52ESect-11.2 P-55ESect-11.2 P-56ESect-11.2 P-58ESect-11.2 P-59ESect-11.2 P-60ESect-11.2 P-61ESect-11.2 P-62ESect-11.2 P-66ESect-11.3 P-1CPSect-11.3 P-2CPSect-11.3 P-1ESect-11.3 P-2ESect-11.3 P-3ESect-11.3 P-4ESect-11.3 P-5ESect-11.3 P-6ESect-11.3 P-7ESect-11.3 P-8ESect-11.3 P-9ESect-11.3 P-10ESect-11.3 P-11ESect-11.3 P-12ESect-11.3 P-13ESect-11.3 P-14ESect-11.3 P-15ESect-11.3 P-16ESect-11.3 P-17ESect-11.3 P-18ESect-11.3 P-19ESect-11.3 P-20ESect-11.3 P-21ESect-11.3 P-22ESect-11.3 P-23ESect-11.3 P-24ESect-11.3 P-25ESect-11.3 P-26ESect-11.3 P-27ESect-11.3 P-28ESect-11.3 P-29ESect-11.3 P-30ESect-11.3 P-31ESect-11.3 P-32ESect-11.3 P-33ESect-11.3 P-34ESect-11.3 P-35ESect-11.3 P-36ESect-11.3 P-37ESect-11.3 P-38ESect-11.3 P-39ESect-11.3 P-40ESect-11.3 P-41ESect-11.3 P-42ESect-11.3 P-43ESect-11.3 P-44ESect-11.3 P-45ESect-11.3 P-46ESect-11.3 P-47ESect-11.3 P-48ESect-11.3 P-49ESect-11.3 P-50ESect-11.3 P-51ESect-11.3 P-52ESect-11.3 P-53ESect-11.3 P-54ESect-11.3 P-55ESect-11.3 P-56ESect-11.3 P-57ESect-11.3 P-58ESect-11.3 P-59ESect-11.3 P-60ESect-11.3 P-61ESect-11.3 P-62ESect-11.3 P-63ESect-11.4 P-1CPSect-11.4 P-2CPSect-11.4 P-3CPSect-11.4 P-1ESect-11.4 P-2ESect-11.4 P-3ESect-11.4 P-4ESect-11.4 P-5ESect-11.4 P-6ESect-11.4 P-7ESect-11.4 P-8ESect-11.4 P-9ESect-11.4 P-10ESect-11.4 P-11ESect-11.4 P-12ESect-11.4 P-13ESect-11.4 P-14ESect-11.4 P-15ESect-11.4 P-16ESect-11.4 P-17ESect-11.4 P-18ESect-11.4 P-19ESect-11.4 P-20ESect-11.4 P-21ESect-11.4 P-22ESect-11.4 P-23ESect-11.4 P-24ESect-11.4 P-25ESect-11.4 P-26ESect-11.4 P-27ESect-11.4 P-28ESect-11.4 P-29ESect-11.4 P-30ESect-11.4 P-31ESect-11.4 P-32ESect-11.4 P-33ESect-11.4 P-34ESect-11.4 P-35ESect-11.4 P-36ESect-11.4 P-37ESect-11.4 P-38ESect-11.4 P-39ESect-11.5 P-1CPSect-11.5 P-2CPSect-11.5 P-3CPSect-11.5 P-4CPSect-11.5 P-1ESect-11.5 P-2ESect-11.5 P-3ESect-11.5 P-4ESect-11.5 P-5ESect-11.5 P-6ESect-11.5 P-7ESect-11.5 P-8ESect-11.5 P-9ESect-11.5 P-10ESect-11.5 P-11ESect-11.5 P-12ESect-11.5 P-15ESect-11.5 P-16ESect-11.5 P-17ESect-11.5 P-18ESect-11.5 P-19ESect-11.5 P-20ESect-11.5 P-21ESect-11.5 P-22ESect-11.5 P-23ESect-11.5 P-24ECh-11 P-1RECh-11 P-2RECh-11 P-3RECh-11 P-4RECh-11 P-5RECh-11 P-6RECh-11 P-7RECh-11 P-8RECh-11 P-9RECh-11 P-10RECh-11 P-11RECh-11 P-12RECh-11 P-13RECh-11 P-14RECh-11 P-15RECh-11 P-16RECh-11 P-17RECh-11 P-18RECh-11 P-19RECh-11 P-20RECh-11 P-21RECh-11 P-22RECh-11 P-23RECh-11 P-24RECh-11 P-25RECh-11 P-26RECh-11 P-27RECh-11 P-28RECh-11 P-29RECh-11 P-30RECh-11 P-31RECh-11 P-32RECh-11 P-33RECh-11 P-34RECh-11 P-38RECh-11 P-39RECh-11 P-40RECh-11 P-41RECh-11 P-35RECh-11 P-36RECh-11 P-37RECh-11 P-1TCh-11 P-2TCh-11 P-3TCh-11 P-4TCh-11 P-5TCh-11 P-6TCh-11 P-7TCh-11 P-8TCh-11 P-9TCh-11 P-10TCh-11 P-11TCh-11 P-12TCh-11 P-13TCh-11 P-14TCh-11 P-15TCh-11 P-16TCh-11 P-17TCh-11 P-19T

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

In Exercises 3540, rationalize the numerator of each expression. 38. x1x

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Divide: 20x74x5

Elementary Technical Mathematics

If we know that then the absolute value of the nth remainder of the Taylor series for y = f(x) about a for is...

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

The polar form for the graph at the right is:

Study Guide for Stewart's Multivariable Calculus, 8th