BuyFindarrow_forward

Introductory Chemistry: A Foundati...

9th Edition
Steven S. Zumdahl + 1 other
ISBN: 9781337399425

Solutions

Chapter
Section
BuyFindarrow_forward

Introductory Chemistry: A Foundati...

9th Edition
Steven S. Zumdahl + 1 other
ISBN: 9781337399425
Textbook Problem
1 views

. Calculate the pH corresponding to each of the following hydrogen ion concentrations, and indicate whether each solution is acidic, basic, or neutral.

a. [ H + ] = 0.00512 M b. [ H + ] = 3.76 × 10 5 M

c. [ H + ] = 5.61 × 10 10 M d. [ H + ] = 8.44 × 10 6 M

Interpretation Introduction

(a)

Interpretation:

The pH of solution should be calculated. If the solution is acidic, neutral or basic should be indicated.

Concept Introduction:

The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic.

The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows:

pH=log[H+]

Here, [H+] is concentration of hydrogen ion.

Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows:

pOH=log[OH]

Here, [OH] is concentration of hydroxide ion.

pH and pOH of a solution are related to each other as follows:

pH+pOH=14

In a pH scale, if the value of pH is below 7 the solution is said to be acidic in nature, if the Ph value is above 7 it is said to be basic in nature. At pH 7, the solution is neutral.

Explanation

Given Information:

The concentration of hydrogen ion is 0.00512 M

Calculation:

From the given hydrogen ion concentration, pH of solution can be calculated as follows:

pH=log[H+<

Interpretation Introduction

(b)

Interpretation:

The pH of solution should be calculated. If the solution is acidic, neutral or basic should be indicated.

Concept Introduction:

The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic.

The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows:

pH=log[H+]

Here, [H+] is concentration of hydrogen ion.

Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows:

pOH=log[OH]

Here, [OH] is concentration of hydroxide ion.

pH and pOH of a solution are related to each other as follows:

pH+pOH=14

In a pH scale, if the value of pH is below 7 the solution is said to be acidic in nature, if the Ph value is above 7 it is said to be basic in nature. At pH 7, the solution is neutral.

Interpretation Introduction

(c)

Interpretation:

The pH of solution should be calculated. If the solution is acidic, neutral or basic should be indicated.

Concept Introduction:

The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic.

The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows:

pH=log[H+]

Here, [H+] is concentration of hydrogen ion.

Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows:

pOH=log[OH]

Here, [OH] is concentration of hydroxide ion.

pH and pOH of a solution are related to each other as follows:

pH+pOH=14

In a pH scale, if the value of pH is below 7 the solution is said to be acidic in nature, if the Ph value is above 7 it is said to be basic in nature. At pH 7, the solution is neutral.

Interpretation Introduction

(d)

Interpretation:

The pH of solution should be calculated. If the solution is acidic, neutral or basic should be indicated.

Concept Introduction:

The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic.

The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows:

pH=log[H+]

Here, [H+] is concentration of hydrogen ion.

Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows:

pOH=log[OH]

Here, [OH] is concentration of hydroxide ion.

pH and pOH of a solution are related to each other as follows:

pH+pOH=14

In a pH scale, if the value of pH is below 7 the solution is said to be acidic in nature, if the Ph value is above 7 it is said to be basic in nature. At pH 7, the solution is neutral.

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 16 Solutions

Show all chapter solutions add
Ch-16 P-2ALQCh-16 P-3ALQCh-16 P-4ALQCh-16 P-5ALQCh-16 P-6ALQCh-16 P-7ALQCh-16 P-8ALQCh-16 P-9ALQCh-16 P-10ALQCh-16 P-11ALQCh-16 P-12ALQCh-16 P-13ALQCh-16 P-14ALQCh-16 P-15ALQCh-16 P-16ALQCh-16 P-17ALQCh-16 P-1QAPCh-16 P-2QAPCh-16 P-3QAPCh-16 P-4QAPCh-16 P-5QAPCh-16 P-6QAPCh-16 P-7QAPCh-16 P-8QAPCh-16 P-9QAPCh-16 P-10QAPCh-16 P-11QAPCh-16 P-12QAPCh-16 P-13QAPCh-16 P-14QAPCh-16 P-15QAPCh-16 P-16QAPCh-16 P-17QAPCh-16 P-18QAPCh-16 P-19QAPCh-16 P-20QAPCh-16 P-21QAPCh-16 P-22QAPCh-16 P-23QAPCh-16 P-24QAPCh-16 P-25QAPCh-16 P-26QAPCh-16 P-27QAPCh-16 P-28QAPCh-16 P-29QAPCh-16 P-30QAPCh-16 P-31QAPCh-16 P-32QAPCh-16 P-33QAPCh-16 P-34QAPCh-16 P-35QAPCh-16 P-36QAPCh-16 P-37QAPCh-16 P-38QAPCh-16 P-39QAPCh-16 P-40QAPCh-16 P-41QAPCh-16 P-42QAPCh-16 P-43QAPCh-16 P-44QAPCh-16 P-45QAPCh-16 P-46QAPCh-16 P-47QAPCh-16 P-48QAPCh-16 P-49QAPCh-16 P-50QAPCh-16 P-51QAPCh-16 P-52QAPCh-16 P-53QAPCh-16 P-54QAPCh-16 P-55QAPCh-16 P-56QAPCh-16 P-57QAPCh-16 P-58QAPCh-16 P-59QAPCh-16 P-60QAPCh-16 P-61QAPCh-16 P-62QAPCh-16 P-63QAPCh-16 P-64QAPCh-16 P-65APCh-16 P-66APCh-16 P-67APCh-16 P-68APCh-16 P-69APCh-16 P-70APCh-16 P-71APCh-16 P-72APCh-16 P-73APCh-16 P-74APCh-16 P-75APCh-16 P-76APCh-16 P-77APCh-16 P-78APCh-16 P-79APCh-16 P-80APCh-16 P-81APCh-16 P-82APCh-16 P-83APCh-16 P-84APCh-16 P-85APCh-16 P-86APCh-16 P-87APCh-16 P-88APCh-16 P-89APCh-16 P-90APCh-16 P-91APCh-16 P-92APCh-16 P-93APCh-16 P-94APCh-16 P-95APCh-16 P-96APCh-16 P-97APCh-16 P-98APCh-16 P-99APCh-16 P-100APCh-16 P-101APCh-16 P-102APCh-16 P-103APCh-16 P-104APCh-16 P-105APCh-16 P-106CPCh-16 P-107CPCh-16 P-108CP

Additional Science Solutions

Find more solutions based on key concepts

Show solutions add

Name the following compounds. a Cu(NO2)3 b (NH4)3P c K2SO3 d Hg3N2

General Chemistry - Standalone book (MindTap Course List)

Type 2 diabetes often improves with a diet that is a. low in carbohydrates (less than 130 g per day). b. as low...

Nutrition: Concepts and Controversies - Standalone book (MindTap Course List)

Distinguish between scalar and vector quantities.

An Introduction to Physical Science

How can errors in the cell cycle lead to cancer in humans?

Human Heredity: Principles and Issues (MindTap Course List)

You are watching a new bridge being built near your house. You notice during the construction that two concrete...

Physics for Scientists and Engineers, Technology Update (No access codes included)

Draw an ocean wave and label its parts. Include a definition of wave period.

Oceanography: An Invitation To Marine Science, Loose-leaf Versin