BuyFindarrow_forward

Contemporary Mathematics for Busin...

8th Edition
Robert Brechner + 1 other
ISBN: 9781305585447

Solutions

Chapter
Section
BuyFindarrow_forward

Contemporary Mathematics for Busin...

8th Edition
Robert Brechner + 1 other
ISBN: 9781305585447
Textbook Problem

Use ratio and proportion to solve the following business situations.

If a bulk order of 1,600 blouses costs $41,600, how much would 2,000 blouses cost?

To determine

To calculate: The cost of 2,000 blouses, if the cost of 1,600 blouses is $41,600.

Explanation

Given Information:

The cost of 1,600 blouses is $41,600.

Formula used:

Cross multiplication method:

To solve the proportional problem by using cross multiplication, follow the steps as mentioned below.

Step 1: Represent the unknowns by a letter.

Step 2: Set the proportion with one ratio, expressed as a fraction on both side of the equal sign.

Step 3: Multiply numerator of the left side ratio with the denominatior of right side ratio and place the product on one side of the equal sign.

Step 4: Multiply denominatior of the left side ratio with the nominatior of right side ratio and place the product on other side of the equal sign.

The step 3 and 4 together is called as cross multiplication.

Step5: Solve for the unknown value.

Calculation:

Consider the cost of 1,600 blouses, $41,600.

Suppose that X be the cost of 2,000 blouses.

The proportion can be written as $41,600 is to 1,600 blouses equals X is to 2,000 blouses,

41,6001,600=X2,000

Apply cross multiplication, this gives,

(41,600)2000=(1,600)X83,200,000=1,600X

Or, it can be written as:

1600X=41,600

This equation represents that X is multiplied by 1,600

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-5.I P-1RESect-5.I P-2RESect-5.I P-3RESect-5.I P-4RESect-5.I P-5RESect-5.I P-6RESect-5.I P-7RESect-5.I P-8RESect-5.I P-9RESect-5.I P-10RESect-5.I P-11RESect-5.I P-12RESect-5.I P-13RESect-5.I P-14RESect-5.I P-15RESect-5.I P-16RESect-5.I P-17RESect-5.I P-18RESect-5.I P-19RESect-5.I P-20RESect-5.I P-21RESect-5.I P-22RESect-5.I P-23RESect-5.I P-24RESect-5.I P-25RESect-5.I P-26RESect-5.I P-27RESect-5.I P-28RESect-5.I P-29RESect-5.I P-30RESect-5.I P-31RESect-5.I P-32RESect-5.II P-11TIESect-5.II P-12TIESect-5.II P-13TIESect-5.II P-14TIESect-5.II P-15TIESect-5.II P-16TIESect-5.II P-17TIESect-5.II P-1RESect-5.II P-2RESect-5.II P-3RESect-5.II P-4RESect-5.II P-5RESect-5.II P-6RESect-5.II P-7RESect-5.II P-8RESect-5.II P-9RESect-5.II P-10RESect-5.II P-11RESect-5.II P-12RESect-5.II P-13RESect-5.II P-14RESect-5.II P-15RESect-5.II P-16RESect-5.II P-17RESect-5.II P-18RESect-5.II P-19RESect-5.II P-20RESect-5.II P-21RESect-5.II P-22RESect-5.II P-23RESect-5.II P-24RESect-5.II P-25RESect-5.II P-26RESect-5.II P-27RESect-5.II P-28RESect-5.II P-29RESect-5.II P-30RECh-5 P-1CRCh-5 P-2CRCh-5 P-3CRCh-5 P-4CRCh-5 P-5CRCh-5 P-6CRCh-5 P-7CRCh-5 P-8CRCh-5 P-9CRCh-5 P-10CRCh-5 P-11CRCh-5 P-12CRCh-5 P-13CRCh-5 P-14CRCh-5 P-1ATCh-5 P-2ATCh-5 P-3ATCh-5 P-4ATCh-5 P-5ATCh-5 P-6ATCh-5 P-7ATCh-5 P-8ATCh-5 P-9ATCh-5 P-10ATCh-5 P-11ATCh-5 P-12ATCh-5 P-13ATCh-5 P-14ATCh-5 P-15ATCh-5 P-16ATCh-5 P-17ATCh-5 P-18ATCh-5 P-19ATCh-5 P-20ATCh-5 P-21ATCh-5 P-22ATCh-5 P-23ATCh-5 P-24ATCh-5 P-25ATCh-5 P-26ATCh-5 P-27ATCh-5 P-28ATCh-5 P-29ATCh-5 P-30ATCh-5 P-31ATCh-5 P-32ATCh-5 P-33ATCh-5 P-34AT

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

[(13)2]3

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Find all solutions of the equation. 23. z2 + z + 2 = 0

Single Variable Calculus: Early Transcendentals, Volume I

Solve the equations in Exercises 126. 6x(x2+1)2(x2+2)48x(x2+1)3(x2+2)3(x2+2)8=0

Finite Mathematics and Applied Calculus (MindTap Course List)

Proof Prove that arccosx=2arctan(x1x2), |x|1

Calculus: Early Transcendental Functions (MindTap Course List)

Evaluate the integral. 20(12t4+14t3t)dt

Single Variable Calculus: Early Transcendentals

The slope of the tangent line to r = cos θ at is:

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

True or False: is a convergent series.

Study Guide for Stewart's Multivariable Calculus, 8th