   Chapter 9.1, Problem 11E ### Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042

#### Solutions

Chapter
Section ### Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042
Textbook Problem

# In Problems 11-14, complete each table and predict the limit, if it exists. f ( x ) = 2 − x − x 2 x − 1 lim x → 1 f ( x ) = ? X f(x) 0.9 0.99 0.999 1.001 1.01 1.1

To determine

The following table and predict the limx1f(x), if it exists,

 x f(x) 0.9 0.99 0.999 1.001 1.01 1.1
Explanation

Given Information:

The provided function is f(x)=2xx2x1.

The incomplete table is given below,

 x f(x) 0.9 0.99 0.999 1.001 1.01 1.1

Explanation:

Consider the provided function,

f(x)=2xx2x1

For x=0.9

Substitute 0.9 for x in the function f(x):

f(0.9)=20.9(0.9)2(0.9)1=1.10.810.1=0.290.1=2.9

For x=0.99

Substitute 0.99 for x in the function f(x):

f(0.99)=20.99(0.99)2(0.99)1=1.010.98010.01=0.02990.01=2.99

For x=0.999

Substitute 0.999 for x in the function f(x):

f(0.999)=20.999(0.999)2(0.999)1=1.0010.9980010.001=0.0029990.001=2.999

For x=1.001

Substitute 1.001 for x in the function f(x):

f(1.001)=21.001(1.001)2(1.001)1=0.9991.0020010.001=0.0030010.001=3.001

For x=1.01

Substitute 1.01 for x in the function f(x):

f(1.01)=21

### Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

#### The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

#### Find more solutions based on key concepts 