preview

Contributions Of Gregor Mendel

Decent Essays

ponsibilities, especially a dispute with the civil government over its attempt to impose special taxes on religious institutions.[14] Mendel died on 6 January 1884, at the age of 61, in Brno, Moravia, Austria-Hungary (now Czech Republic), from chronic nephritis. Czech composer Leoš Janáček played the organ at his funeral. After his death, the succeeding abbot burned all papers in Mendel's collection, to mark an end to the disputes over taxation.[15]

Experiments on plant hybridization

Dominant and recessive phenotypes. (1) Parental generation. (2) F1 generation. (3) F2 generation.
Gregor Mendel, who is known as the "father of modern genetics", was inspired by both his professors at the Palacký University, Olomouc (Friedrich Franz and Johann Karl Nestler), and his colleagues at the monastery (such as Franz Diebl) to study variation in plants. In 1854, Napp authorized Mendel to carry out a study in the monastery's 2 hectares (4.9 acres) experimental garden,[16] which was originally planted by Napp in 1830.[13] Unlike Nestler, who studied hereditary traits in sheep, Mendel focused on plants.

Mendel carried out his experiments with the common edible pea in his small garden plot in the monastery. These experiments were begun in 1856 and completed some eight years later. In 1865, he described his experiments in two lectures at a regional scientific conference. In the first lecture he described his observations and experimental results. In the second, which was given one month later, he explained them.

After initial experiments with pea plants, Mendel settled on studying seven traits that seemed to be inherited independently of other traits: seed shape, flower color, seed coat tint, pod shape, unripe pod color, flower location, and plant height. He first focused on seed shape, which was either angular or round.[17] Between 1856 and 1863 Mendel cultivated and tested some 28,000 plants, the majority of which were pea plants (Pisum sativum).[18][19][20] This study showed that, when true-breeding different varieties were crossed to each other (e.g., tall plants fertilized by short plants), one in four pea plants had purebred recessive traits, two out of four were hybrids, and one out of four were purebred dominant.

Get Access