Separation and Purification of the Components of an Analgesic Tablet. Cora Bruno, Lab Section E. Aspirin, Caffeine and Acetaminophen were separated from four analgesic tablets of Excedrin using extraction techniques. 5% wt/vol NaHCO3, 4M HCL, ethyl acetate and deionized water were used to separate the three active components. MgSO4 was used to dry each extraction. Aspirin was isolated using a hot water bath and weighed to determine the percent theoretical recovery and the actual percent recovery of aspirin. After separation, Aspirin (ASA), Caffeine (CAF), and Acetaminophen (ACE) were purified and identified using Thin Layer Chromatography (TLC). Standards and purified ASA, CAF, and ACE were spotted on the silica gel (stationary phase) of the
Ever wonder about the chemical makeup of tablets that people take for pain relief? Before a tablet can be successfully made, the limiting and excess reactants must be considered. The limiting reactant will affect the amount of the product that can be made. Another reason why the starting reactants must be determined carefully is to make reduce the amount of the reactant in excess so that reactants are not wasted. This experiment uses an Alka-Seltzer tablet. Alka-Seltzer dissolves in water and is an antacid and a pain reliever1. The Alka-Seltzer tablet has many uses such as relief of headaches, ingestion, heart burns, or even upset stomachs2. The active ingredients in an Alka-Seltzer tablet is aspirin, also known as acetyl-salicylic acid (C8H12O4), citric acid (C6H8O7), and sodium bicarbonate (NaHCO3)2. The aspirin in the Alka-Seltzer tablet helps with pain relief. Because of the acid-base chemistry (Brønsted-Lowry), citric acid and sodium bicarbonate produce O2, which makes the tablet fizz when it is dropped in liquid. The Brønsted-Lowry theory shows how the Brønsted-Lowry acid donates a hydrogen ion while the Brønsted-Lowry base accepts the hydrogen ions3. The remaining NaHCO3 that is in excess post reaction with the citric acid is what is used to neutralize stomach acid which helps relief heart burn2. The problem in
In experiment two, the drug Panacetin was separated by a series of chemical reactions into its three components: sucrose, aspirin, and an unknown active ingredient, either acetanilide or phenacetin. The purpose of this lab was to determine what percentages of each component is present in the pain-killer. The initial step was to dissolve Panacetin in dichloromethane. However, sucrose is insoluble in dichloromethane because organic molecules are soluble in organic solvents, and dichloromethane is an inorganic solvent, so only aspirin and the unknown dissolved. By using gravity filtration, sucrose was filtered from the solution and 0.30g of solid was collected.
The purpose of this lab is to investigate the composition of a compound suspected to be Panacetin, a type of pain-killer. Panacetin is typically made up of sucrose, aspirin, and acetaminophen, but the third component in this experiment is unknown. The unknown component is suspected to be a chemical relative of acetaminophen, either acetanilide or phenacetin. Using techniques such as extraction, evaporation, and filtration, the three components will be isolated based on their solubilities and acid-base properties. Then, the percent composition of Panacetin can be deduced based on the masses of the three dried components. The
Discussion The third experiment of the semester involves identifying an unknown component of Panacetin, a common pain relief medication, separated and precipitated in the previous experiment. Although Panacetin’s label reports this third ingredient as Tylenol, there is controversy over the true classification of the third substance. This Panacetin label also reports that the unknown constituent makes up 50% of the composition of Panacetin, compared to aspirin’s 40% composition and sucrose’s 10% composition, meaning that it is currently unknown what half of the drug people ingest is identified as. Research results have failed to repeatedly show that the third component of Panacetin is Tylenol, which leads to the hypothesis
Aspirin, Caffeine and Salicylamide were extracted from an over-the-counter pain reliever (BC Powder). These components were separated by manipulating their solubilities by adjusting the acidity and basicity of the solution. By doing this, the three components were forced into conjugate acid (or base) forms, causing selective solubility in either an aqueous or organic solvent. These layers were then separated by use of a separation funnel. Once separated, the components extracted were characterized by measuring the melting point and performing a TLC analysis. Also, the recovered aspirin from the first part of the experiment was recrystallized and compared to that of the
Pre-Lab: Analgesic drugs are known for reducing pain, while antiseptic drugs reduce symptoms such as fevers and swelling. However, some of these drugs can reduce both illnesses. To obtain a pure compound in these drugs, the scientist needs to separate the desired compound by taking advantage of the different physical and chemical properties. Such as; different boiling points, melting points and their solubility properties. To do this a chemist can also asses the differences between acidic and basic substances when they are added to water soluble mixtures. Within this current experiment I will asses the
The isolation of aspirin, acetaminophen, and caffeine from Excedrin utilized the differing acidities and polarities of the three compounds. Extraction involved separating the three components by reacting them with HCL and NaOH, while thin layer chromatography involved separating the isolated compounds on a TLC plate. The binder was the first component extracted; followed by aspirin, acetaminophen, and caffeine was extracted last since it is a neutral and polar compound. The entire process can be seen in figure 1. The most utilized methods of extraction were gravity filtration and vacuum filtration which are displayed in figures 3 and 4 respectively. These methods were utilized to separate compounds based upon their differing
In this project, C. Elegans are hermaphrodite worms that will be used since they are easy to maintain in lab, as well as have short life cycles. The gene that the project attempted to knockdown in C. Elegans with RNAi treatment is the unc-22 gene. RNAi disrupts gene expression in the presence of double stranded RNA (dsRNA) that is complementary to target gene sequence. The unc-22 gene codes for a muscle protein called twitchin in wild-type worms. The Unc-22 is required for muscle regulation and maintenance in C.Elegans. To verify that the RNAi treatment worked, would check the unc-22 mRNA levels in the worms, in addition to phenotype observation.
Components containing caffeine were composed into stock solutions. These solutions were diluted to 1: 10 substance: mobile phase. A stock solution of caffeine was diluted 1:50. A sequence of diluted caffeine solutions were prepared for use as a standard (ppm): 1, 2, 4, and 10. Solutions of acetaminophen, acetylsalicylic acid, and Goody’s Powder were developed to differentiate chromatographic peaks observed. These solutions were subjected to HPLC for examination of the observed peak area and retention time for the set of compounds. Comparison of retention time allowed for the differentiation of peaks observed. The peak area obtained was utilized to determine the relative concentration of caffeine present in Goody’s Powder based on the relationship obtained in the standard. The content of caffeine present in Goody’s Powder by percent weight was identified.
The investigation is showing how enzymes work inside a mammal's stomach. Rennin is the enzyme found in young mammals and has more effect
The mole is a convenient unit for analyzing chemical reactions. Avogadro’s number is equal to the mole. The mass of a mole of any compound or element is the mass in grams that corresponds to the molecular formula, also known as the atomic mass. In this experiment, you will observe the reaction of iron nails with a solution of copper (II) chloride and determine the number of moles involved in the reaction. You will determine the number of moles of copper produced in the reaction of iron and copper (II) chloride, determine the number of moles of iron used up in the reaction of iron and copper (II) chloride, determine the ratio of moles of iron to moles of copper, and determine the number of atoms and formula units involved in
AIM: To extract codeine and paracetamol from its tablet by solvent extraction and tentatively identify in comparison to standards using Thin Layer Chromatography.
Acetaminophen is a common pain reliever and fever reducer used to treat conditions such as head, muscle or toothache, as well as colds, fevers, and even arthritis. It is available in a many tablet form to be ingested. These tablets are manufactured by a large variety of pharmaceutical manufactures including a great deal of generic brand companies. These tablets all have the same active ingredient in acetaminophen, yet each hold different inactive ingredients that can impact the overall performance of the drug. These inactive ingredients affect the overall chemical stability of the tablets and can lead to a faster decrease in potency of the acetaminophen tablet over time making the tablet less viable of an option to treat common aches and pains. Storage outside the range of the recommended temperature could greatly increase this rate of degradation.
The build up of stomach acid may cause irritation and excess pain to individuals. Luckily, antacids being a weak base can help relieve the symptoms and pain. Antacids, such as Gelusil, Medi-Firs, Alka Seltzer, and Alcalak are neutralizing agents of acids that become helpful to the human body when heartburn occurs. Heartburn, also known as acid reflux is a common medical issue that occurs when hydrochloric acid (HCl) from the stomach moves backward along the digestive track to the esophagus (located within the throat). This reverse flow of fluids causes a burning sensation due to and possible sour taste that is characteristic of acids [1].
Excedrin combines three different medications aspirin, caffeine, and acetaminophen for pain relief. Acetaminophen changes the way your body feels