1. A 60-mm diameter steel tube with a wall thickness of 3 mm just fits in a rigid hole. Determine the tangential stress developed if an axial compressive load of 12 kN is applied. Use v = 0.30 and E = 200 GPa. Answer: o₂ = 6.37 MPa 2. A 200-mm long bronze tube closed at both ends fits without clearance in a 70-mm hole in a rigid block. It has a diameter of 70 mm and a wall thickness of 5 mm. The tube then sustained an internal pressure of 4.5 MPa. Use v = 0.33 and E= 83 GPa. Compute the tangential stress in the tube. Answer: 0 = 5.20 MPa

Mechanics of Materials (MindTap Course List)
9th Edition
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Barry J. Goodno, James M. Gere
Chapter8: Applications Of Plane Stress (pressure Vessels, Beams, And Combined Loadings)
Section: Chapter Questions
Problem 8.5.11P: The hollow drill pipe for an oil well (sec figure) is 6,2 in. in outer diameter and 0.75 in. in...
icon
Related questions
Question
100%
1. A 60-mm diameter steel tube with a wall thickness of 3 mm just fits in a rigid hole. Determine the
tangential stress developed if an axial compressive load of 12 kN is applied. Use v = 0.30 and E = 200 GPa.
Answer: 0 = 6.37 MPa
2. A 200-mm long bronze tube closed at both ends fits without clearance in a 70-mm hole in a rigid block.
It has a diameter of 70 mm and a wall thickness of 5 mm. The tube then sustained an internal pressure
of 4.5 MPa. Use v = 0.33 and E= 83 GPa. Compute the tangential stress in the tube. Answer: Ot =
5.20 MPa
Transcribed Image Text:1. A 60-mm diameter steel tube with a wall thickness of 3 mm just fits in a rigid hole. Determine the tangential stress developed if an axial compressive load of 12 kN is applied. Use v = 0.30 and E = 200 GPa. Answer: 0 = 6.37 MPa 2. A 200-mm long bronze tube closed at both ends fits without clearance in a 70-mm hole in a rigid block. It has a diameter of 70 mm and a wall thickness of 5 mm. The tube then sustained an internal pressure of 4.5 MPa. Use v = 0.33 and E= 83 GPa. Compute the tangential stress in the tube. Answer: Ot = 5.20 MPa
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Pressure Vessels
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning