150° 9 270° -2q Q What is the electric field at the center of the circle due to these point charges? (Express your answer in vector form. Use the following as necessary: ker 9, and r.) E = 3k q ,.2 -j (b) What If? What is the minimum electric field magnitude that could be obtained at the center of the circle by moving one or more of the charges along the circle, with a minimum separation of 3.90° between each of the charges? Express your result as the ratio of this new electric field magnitude to the magnitude of the electric field found in part (a). Eminimum 0.0015 Epart (a) Place the two charges +q at 0 = 270° ±y, where y is the smallest angle at which the charges do not overlap with the charge -2q, then write an expression for the electric field at the center.

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter19: Electric Forces And Electric Fields
Section: Chapter Questions
Problem 9OQ: Two solid spheres, both of radius 5 cm, carry identical total charges of 2 C. Sphere A is a good...
icon
Related questions
Question
(a) Three point charges are located on the circumference of a circle of radius r, at the angles shown in the figure.
150°
O
30°
270°
-2q
Q
What is the electric field at the center of the circle due to these point charges? (Express your answer in vector form. Use the following as necessary: ker 9, and r.)
3k q
-j
2
(b) What If? What is the minimum electric field magnitude that could be obtained at the center of the circle by moving one or more of the charges along the circle, with a minimum separation of
3.90° between each of the charges? Express your result as the ratio of this new electric field magnitude to the magnitude of the electric field found in part (a).
Eminimum 0.0015
X
Epart (a)
Place the two charges +q at 0 = 270° ± y, where y is the smallest angle at which the charges do not overlap with the charge -2q, then write an expression for the electric field at the center.
9
Transcribed Image Text:(a) Three point charges are located on the circumference of a circle of radius r, at the angles shown in the figure. 150° O 30° 270° -2q Q What is the electric field at the center of the circle due to these point charges? (Express your answer in vector form. Use the following as necessary: ker 9, and r.) 3k q -j 2 (b) What If? What is the minimum electric field magnitude that could be obtained at the center of the circle by moving one or more of the charges along the circle, with a minimum separation of 3.90° between each of the charges? Express your result as the ratio of this new electric field magnitude to the magnitude of the electric field found in part (a). Eminimum 0.0015 X Epart (a) Place the two charges +q at 0 = 270° ± y, where y is the smallest angle at which the charges do not overlap with the charge -2q, then write an expression for the electric field at the center. 9
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Knowledge Booster
Electric field
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning