2. The horizontal rod OA rotates about a vertical shaft according to the relation 0 = 3t°, where 0 and t are expressed in rad/s and seconds, respectively. A 500 g collar B is held by a cord with a breaking strength of 37 N. Neglecting friction, determine, immediately after the cord breaks: a. How long it takes for the cord to break b. The relative acceleration of the collar with respect to the rod. c. The magnitude of the horizontal force exerted on the collar by the rod.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
2. The horizontal rod OA rotates about a vertical shaft according to the relation 6 = 3t°,
where 0 and t are expressed in rad/s and seconds, respectively. A 500 g collar B is held
by a cord with a breaking strength of 37 N. Neglecting friction, determine, immediately
after the cord breaks:
a. How long it takes for the cord to break
b. The relative acceleration of the collar with respect to the rod.
c. The magnitude of the horizontal force exerted on the collar by the rod.
Note: the horizontal force corresponds to ég direction
d. When the collar breaks free from its initial position of 0.5 m and hits the stop at A
which is 0.62 m from point O, calculate the angular velocity [rad/s] at this state.
*Use initial angular velocity from when cord broke in order to solve for final
angular velocity using conversation of angular momentum.
0.5 m
Transcribed Image Text:2. The horizontal rod OA rotates about a vertical shaft according to the relation 6 = 3t°, where 0 and t are expressed in rad/s and seconds, respectively. A 500 g collar B is held by a cord with a breaking strength of 37 N. Neglecting friction, determine, immediately after the cord breaks: a. How long it takes for the cord to break b. The relative acceleration of the collar with respect to the rod. c. The magnitude of the horizontal force exerted on the collar by the rod. Note: the horizontal force corresponds to ég direction d. When the collar breaks free from its initial position of 0.5 m and hits the stop at A which is 0.62 m from point O, calculate the angular velocity [rad/s] at this state. *Use initial angular velocity from when cord broke in order to solve for final angular velocity using conversation of angular momentum. 0.5 m
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Dynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY