2-1. Temperature Response in Cooling a Wire. A small copper wire with a diameter of 0.792 mm and initially at 366.5 K is suddenly immersed in a liquid held constant at 311 K. The convection coefficient h 85.2 W/m K. The physical properties can be assumed constant and are k =374 W/m K, c, = 0.389 kJ/kg K, and p = 8890 kg/m2. (a) Determine the time in seconds for the average temperature of the wire to drop to 338.8 K (one-half the initial temperature difference). (b) Do the same but for h 11.36 W/m2 K (c) For part (b), calculate the total amount of heat removed for a wire 1.0 m р u (A long. (a) t 5.66 s Ans. the Smou hire is lons asbume Nhere rraolius , here radlius yinder hitu x Chapter 14 Principles of Unsteady-State Heat Transfer

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter7: Forced Convection Inside Tubes And Ducts
Section: Chapter Questions
Problem 7.29P
icon
Related questions
Question
100%
2-1. Temperature Response in Cooling a Wire. A small copper wire with a diameter of
0.792 mm and initially at 366.5 K is suddenly immersed in a liquid held constant at
311 K. The convection coefficient h 85.2 W/m K. The physical properties can be
assumed constant and are k =374 W/m K, c, = 0.389 kJ/kg K, and p = 8890 kg/m2.
(a) Determine the time in seconds for the average temperature of the wire to
drop to 338.8 K (one-half the initial temperature difference).
(b) Do the same but for h 11.36 W/m2 K
(c) For part (b), calculate the total amount of heat removed for a wire 1.0 m
р
u (A
long.
(a) t 5.66 s
Ans.
the Smou hire is lons
asbume
Nhere rraolius
, here radlius
yinder hitu x
Chapter 14
Principles of Unsteady-State Heat Transfer
Transcribed Image Text:2-1. Temperature Response in Cooling a Wire. A small copper wire with a diameter of 0.792 mm and initially at 366.5 K is suddenly immersed in a liquid held constant at 311 K. The convection coefficient h 85.2 W/m K. The physical properties can be assumed constant and are k =374 W/m K, c, = 0.389 kJ/kg K, and p = 8890 kg/m2. (a) Determine the time in seconds for the average temperature of the wire to drop to 338.8 K (one-half the initial temperature difference). (b) Do the same but for h 11.36 W/m2 K (c) For part (b), calculate the total amount of heat removed for a wire 1.0 m р u (A long. (a) t 5.66 s Ans. the Smou hire is lons asbume Nhere rraolius , here radlius yinder hitu x Chapter 14 Principles of Unsteady-State Heat Transfer
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 3 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning