The wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration kG=0.4 m. The spring’s unstretched length is L0=1.0 m. The stiffness coefficient of the spring is k=2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is θ=30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is θ=0°. The spring’s length at the state 2 is L2=4 m. (1) If the datum for gravitational potential energy is set as shown below, the the gravitational potential energy of the wheel at the state 1 is 0 N m(two decimal places) (ANSWER IS 0) (2) If the datum for gravitional potential energ is set as shown below, the gravitational potential energy of the wheel at the state 2 is 0 N m (two decimal places) (ANSWER IS 0) (3) At state 1, how long the spring is stretched from its unstretched state (length difference):________(m) (two decimal places) (4) The elastic potential energy of the spring at the potion 1 is_______(N·m) (two decimal places) (5)  At state 2, how long the spring is stretched from its unstretched state (length difference):________(m) (two decimal places) (6) The elastic potential energy of the spring at the state 2 is_______(N·m) (two decimal places)  (7) The instantaneous center of zero velocity (IC) of the wheel at state 1 is (ANSWER IS POINT A) (8) The mass moment of inertial of the wheel about its mass center G is IG =_________(kg·m2 ) (two decimal places) (9) The mass moment of inertial of the wheel about its IC center at state 1 is IIC =_________(kg·m2 ) (two decimal places) (10) The total kinetic energy of the system at the state1 is:________ (N·m) (two decimal places) (11) Apply the theory of work-energy  to the whole system during state 1 and state 2, and calculate the angular velocity of the wheel at the state 2:  2 rad/s. (two decimal places)  (ANSWER IS 2 rad/s) 12) Based on result from (11), the kinetic energy of the wheel at the state 2 is:______ (N·m) (two decimal places)

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter2: Steady Heat Conduction
Section: Chapter Questions
Problem 2.35P
icon
Related questions
Question

Please answer: 3, 4, 5, 6, 8, 9, 10, 12

 

The wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration kG=0.4 m. The spring’s unstretched length is L0=1.0 m. The stiffness coefficient of the spring is k=2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is θ=30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is θ=0°. The spring’s length at the state 2 is L2=4 m.

(1) If the datum for gravitational potential energy is set as shown below, the the gravitational potential energy of the wheel at the state 1 is 0 N m(two decimal places) (ANSWER IS 0)

(2) If the datum for gravitional potential energ is set as shown below, the gravitational potential energy of the wheel at the state 2 is 0 N m (two decimal places) (ANSWER IS 0)

(3) At state 1, how long the spring is stretched from its unstretched state (length difference):________(m) (two decimal places)

(4) The elastic potential energy of the spring at the potion 1 is_______(N·m) (two decimal places)

(5)  At state 2, how long the spring is stretched from its unstretched state (length difference):________(m) (two decimal places)

(6) The elastic potential energy of the spring at the state 2 is_______(N·m) (two decimal places) 

(7) The instantaneous center of zero velocity (IC) of the wheel at state 1 is (ANSWER IS POINT A)

(8) The mass moment of inertial of the wheel about its mass center G is I=_________(kg·m) (two decimal places)

(9) The mass moment of inertial of the wheel about its IC center at state 1 is IIC =_________(kg·m) (two decimal places)

(10) The total kinetic energy of the system at the state1 is:________ (N·m) (two decimal places)

(11) Apply the theory of work-energy  to the whole system during state 1 and state 2, and calculate the angular velocity of the wheel at the state 2:  2 rad/s. (two decimal places)  (ANSWER IS 2 rad/s)

12) Based on result from (11), the kinetic energy of the wheel at the state 2 is:______ (N·m) (two decimal places)

//
44
L2
J-
State 2
Li
State 1
datum
Transcribed Image Text:// 44 L2 J- State 2 Li State 1 datum
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Design of Mechanical Springs
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning