4. Through a refinery, fuel oil is flowing in a pipe at a velocíty of 7.5 m/s and a pressure of 202600 Pa. The pipe increased 5 m in height on a higher level. The diameter of the inlet pipe is 0.8 m and the outlet of the pipe is 0.95 m. The velocity of inlet and outlet are not the same. Determine the pressure at the outlet of the pipe if the density of fuel oil is 750 kg/m3 and gravity g is 9.8 m/s?.

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter6: Forced Convection Over Exterior Surfaces
Section: Chapter Questions
Problem 6.12P
icon
Related questions
Question
4. Through a refinery, fuel oil is flowing in a pipe at a velocíty of 7.5 m/s and a pressure of
202600 Pa. The pipe increased 5 m in height on a higher level. The diameter of the inlet
pipe is 0.8 m and the outlet of the pipe is 0.95 m. The velocity of inlet and outlet are not the
same. Determine the pressure at the outlet of the pipe if the density of fuel oil is 750 kg/m3
and gravity g is 9.8 m/s?.
Transcribed Image Text:4. Through a refinery, fuel oil is flowing in a pipe at a velocíty of 7.5 m/s and a pressure of 202600 Pa. The pipe increased 5 m in height on a higher level. The diameter of the inlet pipe is 0.8 m and the outlet of the pipe is 0.95 m. The velocity of inlet and outlet are not the same. Determine the pressure at the outlet of the pipe if the density of fuel oil is 750 kg/m3 and gravity g is 9.8 m/s?.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Fluid Dynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning