4.15 The importance of having a good branch predictor depends on how often conditional branches are executed. Together with branch predictor accuracy, this will determine how much time is spent stalling due to mispredicted branches. In this exercise, assume that the breakdown of dynamic instructions into various instruction categories is as follows: R-Type BEQ JMP LW SW 40% 25% 5% 25% 5% Also, assume the following branch predictor accuracies: Always-Taken Always-Not-Taken 2-Bit 45% 55% 85% 4.15.1 [10] <$4.8> Stall cycles due to mispredicted branches increase the CPI. What is the extra CPI due to mispredicted branches with the always-taken predictor? Assume that branch outcomes are determined in the EX stage, that there are no data hazards, and that no delay slots are used.

C++ for Engineers and Scientists
4th Edition
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Bronson, Gary J.
Chapter2: Problem Solving Using C++using
Section2.3: Data Types
Problem 9E: (Practice) Although the total number of bytes varies from computer to computer, memory sizes of...
icon
Related questions
Question
4.15 The importance of having a good branch predictor depends on how often
conditional branches are executed. Together with branch predictor accuracy, this
will determine how much time is spent stalling due to mispredicted branches. In
this exercise, assume that the breakdown of dynamic instructions into various
instruction categories is as follows:
R-Type
BEQ
JMP
LW
SW
40%
25%
5%
25%
5%
Also, assume the following branch predictor accuracies:
Always-Taken
Always-Not-Taken
2-Bit
45%
55%
85%
4.15.1 [10] <$4.8> Stall cycles due to mispredicted branches increase the
CPI. What is the extra CPI due to mispredicted branches with the always-taken
predictor? Assume that branch outcomes are determined in the EX stage, that there
are no data hazards, and that no delay slots are used.
Transcribed Image Text:4.15 The importance of having a good branch predictor depends on how often conditional branches are executed. Together with branch predictor accuracy, this will determine how much time is spent stalling due to mispredicted branches. In this exercise, assume that the breakdown of dynamic instructions into various instruction categories is as follows: R-Type BEQ JMP LW SW 40% 25% 5% 25% 5% Also, assume the following branch predictor accuracies: Always-Taken Always-Not-Taken 2-Bit 45% 55% 85% 4.15.1 [10] <$4.8> Stall cycles due to mispredicted branches increase the CPI. What is the extra CPI due to mispredicted branches with the always-taken predictor? Assume that branch outcomes are determined in the EX stage, that there are no data hazards, and that no delay slots are used.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
C++ for Engineers and Scientists
C++ for Engineers and Scientists
Computer Science
ISBN:
9781133187844
Author:
Bronson, Gary J.
Publisher:
Course Technology Ptr