5. (Q7) An ultimate Frisbee player (body mass of 54 kg) sprints at 7.1 m/s and makes a quick turn to her right. In the stance phase during this turn, her vertical acceleration is 5.0 m/s² and her horizontal deceleration is -2.0 m/s2. If the static coefficient of friction between her foot and the turf is 0.8, how small of a radius (m) can she have on her turn not to slip? Assume that air resistance is negligible.

College Physics
10th Edition
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter7: Rotational Motion And The Law Of Gravity
Section: Chapter Questions
Problem 8WUE: A car of mass 1 230 kg travels along a circular road of radius 60.0 m at 18.0 m/s. (a) Calculate the...
icon
Related questions
Topic Video
Question
5. (Q7) An ultimate Frisbee player (body mass of 54 kg) sprints at 7.1 m/s and makes a quick
turn to her right. In the stance phase during this turn, her vertical acceleration is 5.0 m/s² and
her horizontal deceleration is -2.0 m/s2. If the static coefficient of friction between her foot
and the turf is 0.8, how small of a radius (m) can she have on her turn not to slip? Assume
that air resistance is negligible.
Transcribed Image Text:5. (Q7) An ultimate Frisbee player (body mass of 54 kg) sprints at 7.1 m/s and makes a quick turn to her right. In the stance phase during this turn, her vertical acceleration is 5.0 m/s² and her horizontal deceleration is -2.0 m/s2. If the static coefficient of friction between her foot and the turf is 0.8, how small of a radius (m) can she have on her turn not to slip? Assume that air resistance is negligible.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
First law of motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
An Introduction to Physical Science
An Introduction to Physical Science
Physics
ISBN:
9781305079137
Author:
James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:
Cengage Learning
Inquiry into Physics
Inquiry into Physics
Physics
ISBN:
9781337515863
Author:
Ostdiek
Publisher:
Cengage