5.119 Water is to be pumped from the large tank shown in Fig. P5.119 with an exit velocity of 6 m/s. It was determined that the original pump (pump 1) that supplies 1 kW of power to the water did not produce the desired velocity. Hence, it is proposed that an additional pump (pump 2) be installed as indicated to increase the flowrate to the desired value. How much power must pump 2 add to the water? The head loss for this flow is h, = 250 Q², where h, is in m when Q is in m/s. Nozzle area = 0.01 m2 Pipe area = 0.02 m² 6 m/s

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
5.119 Water is to be pumped from the large tank shown in Fig.
P5.119 with an exit velocity of 6 m/s. It was determined that the
original pump (pump 1) that supplies 1 kW of power to the water
did not produce the desired velocity. Hence, it is proposed that an
additional pump (pump 2) be installed as indicated to increase the
flowrate to the desired value. How much power must pump 2 add
to the water? The head loss for this flow is h, = 250 Q², where h, is
in m when Q is in m³/s.
Nozzle area = 0.01 m²
Pipe area = 0.02 m²
%3!
V = 6 m/s
Pump
L#2 _
Pump
#1
2 m
Figure P5.119
Transcribed Image Text:5.119 Water is to be pumped from the large tank shown in Fig. P5.119 with an exit velocity of 6 m/s. It was determined that the original pump (pump 1) that supplies 1 kW of power to the water did not produce the desired velocity. Hence, it is proposed that an additional pump (pump 2) be installed as indicated to increase the flowrate to the desired value. How much power must pump 2 add to the water? The head loss for this flow is h, = 250 Q², where h, is in m when Q is in m³/s. Nozzle area = 0.01 m² Pipe area = 0.02 m² %3! V = 6 m/s Pump L#2 _ Pump #1 2 m Figure P5.119
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Applied Fluid Mechanics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY