6.4 Linear and Nonlinear Media 293 (a) FIGURE 6.31 (b) Problem 6.23 A familiar toy consists of donut-shaped permanent magnets (magne- tization parallel to the axis), which slide frictionlessly on a vertical rod (Fig. 6.31). Treat the magnets as dipoles, with mass ma and dipole moment m. (a) If you put two back-to-back magnets on the rod, the upper one will "float"—the magnetic force upward balancing the gravitational force downward. At what height (z) does it float? (b) If you now add a third magnet (parallel to the bottom one), what is the ratio of the two heights? (Determine the actual number, to three significant digits.) [Answer: (a) [3µom²/2лmɑg] ¹⁄4; (b) 0.8501] Problem 6.24 Imagine two charged magnetic dipoles (charge q, dipole moment m), constrained to move on the z axis (same as Problem 6.23(a), but without gravity). Electrically they repel, but magnetically (if both m's point in the z direction) they attract. (a) Find the equilibrium separation distance. (b) What is the equilibrium separation for two electrons in this orientation. [Answer: 4.72 x 10-13 m.] (c) Does there exist, then, a stable bound state of two electrons?

Modern Physics
3rd Edition
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Chapter13: Nuclear Structure
Section: Chapter Questions
Problem 2Q: A proton precesses with a frequency p in the presence of a magnetic field. If the intensity of the...
icon
Related questions
Question

Problem 6.24

6.4
Linear and Nonlinear Media
293
(a)
FIGURE 6.31
(b)
Problem 6.23 A familiar toy consists of donut-shaped permanent magnets (magne-
tization parallel to the axis), which slide frictionlessly on a vertical rod (Fig. 6.31).
Treat the magnets as dipoles, with mass ma and dipole moment m.
(a) If you put two back-to-back magnets on the rod, the upper one will "float"—the
magnetic force upward balancing the gravitational force downward. At what
height (z) does it float?
(b) If you now add a third magnet (parallel to the bottom one), what is the ratio of
the two heights? (Determine the actual number, to three significant digits.)
[Answer: (a) [3µom²/2лmɑg] ¹⁄4; (b) 0.8501]
Problem 6.24 Imagine two charged magnetic dipoles (charge q, dipole moment m),
constrained to move on the z axis (same as Problem 6.23(a), but without gravity).
Electrically they repel, but magnetically (if both m's point in the z direction) they
attract.
(a) Find the equilibrium separation distance.
(b) What is the equilibrium separation for two electrons in this orientation.
[Answer: 4.72 x 10-13 m.]
(c) Does there exist, then, a stable bound state of two electrons?
Transcribed Image Text:6.4 Linear and Nonlinear Media 293 (a) FIGURE 6.31 (b) Problem 6.23 A familiar toy consists of donut-shaped permanent magnets (magne- tization parallel to the axis), which slide frictionlessly on a vertical rod (Fig. 6.31). Treat the magnets as dipoles, with mass ma and dipole moment m. (a) If you put two back-to-back magnets on the rod, the upper one will "float"—the magnetic force upward balancing the gravitational force downward. At what height (z) does it float? (b) If you now add a third magnet (parallel to the bottom one), what is the ratio of the two heights? (Determine the actual number, to three significant digits.) [Answer: (a) [3µom²/2лmɑg] ¹⁄4; (b) 0.8501] Problem 6.24 Imagine two charged magnetic dipoles (charge q, dipole moment m), constrained to move on the z axis (same as Problem 6.23(a), but without gravity). Electrically they repel, but magnetically (if both m's point in the z direction) they attract. (a) Find the equilibrium separation distance. (b) What is the equilibrium separation for two electrons in this orientation. [Answer: 4.72 x 10-13 m.] (c) Does there exist, then, a stable bound state of two electrons?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Modern Physics
Modern Physics
Physics
ISBN:
9781111794378
Author:
Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:
Cengage Learning
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Inquiry into Physics
Inquiry into Physics
Physics
ISBN:
9781337515863
Author:
Ostdiek
Publisher:
Cengage