79. A block of mass m = 2.50 kg slides down a 30.0° incline which is 3.60 m high. At the bottom, it strikes a block of mass M = 7.00 kg which is at rest on a horizontal surface, Fig. 7-47. (Assume a smooth transition at the bottom of the incline.) If the collision is elastic, and friction can be ignored, determine (a) the speeds of the two blocks after the collision, and (b) how far back up the incline the smaller mass will go. 3.60 m FIGURE 7-47 M 30.0% Problem 79.

College Physics
10th Edition
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter6: Momentum And Collisions
Section: Chapter Questions
Problem 8WUE: A car of mass 750 kg traveling at a velocity of 27 m/s in the positive x-direction crashes into the...
icon
Related questions
Question
79. A block of mass m = 2.50 kg slides down a 30.0° incline
which is 3.60 m high. At the bottom, it strikes a block of
mass M = 7.00 kg which is at rest on a horizontal surface,
Fig. 7-47. (Assume a smooth transition at the bottom of the
incline.) If the collision is elastic, and friction can be ignored,
determine (a) the speeds of the two blocks after the collision,
and (b) how far back up the incline the smaller mass will go.
3.60 m
FIGURE 7-47
M
30.0%
Problem 79.
Transcribed Image Text:79. A block of mass m = 2.50 kg slides down a 30.0° incline which is 3.60 m high. At the bottom, it strikes a block of mass M = 7.00 kg which is at rest on a horizontal surface, Fig. 7-47. (Assume a smooth transition at the bottom of the incline.) If the collision is elastic, and friction can be ignored, determine (a) the speeds of the two blocks after the collision, and (b) how far back up the incline the smaller mass will go. 3.60 m FIGURE 7-47 M 30.0% Problem 79.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning