9. A hydroelectric plant has a reservoir of area 2 sq. kilometers and of capacity 5 million cubic meters. The net head of water at the turbine is 50 m. If the efficiencies of turbine and generator are 85% and 95% respectively, calculate the total energy in kWh that can be generated from this station. If a load of 15000 kW has been supplied for 4 hours, find the fall in reservoir.

Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Chapter2: Fundamentals
Section: Chapter Questions
Problem 2.31P: Consider two interconnected voltage sources connected by a line of impedance Z=jX, as shown in...
icon
Related questions
Question
9. A hydroelectric plant has a reservoir of area 2 sq. kilometers and of capacity 5 million cubic meters.
The net head of water at the turbine is 50 m. If the efficiencies of turbine and generator are 85% and 95%
respectively, calculate the total energy in kWh that can be generated from this station. If a load of 15000
kW has been supplied for 4 hours, find the fall in reservoir.
Transcribed Image Text:9. A hydroelectric plant has a reservoir of area 2 sq. kilometers and of capacity 5 million cubic meters. The net head of water at the turbine is 50 m. If the efficiencies of turbine and generator are 85% and 95% respectively, calculate the total energy in kWh that can be generated from this station. If a load of 15000 kW has been supplied for 4 hours, find the fall in reservoir.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Maximum power transfer theorem
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Power System Analysis and Design (MindTap Course …
Power System Analysis and Design (MindTap Course …
Electrical Engineering
ISBN:
9781305632134
Author:
J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:
Cengage Learning