9. The following question is about power dissipation in a resistor, which we didnâÂÂt really cover in class. This topic is fairly easy though. In a circuit, all the power delivered by the battery must be dissipated by the elements to the circuit. This is simply a statement of the conservation of energy. How much energy dis- sipated depends on the resistance of the element and the voltage across the resistor, or the current through it. The relevant equa- tions for the problems are as follows. For a circuit element, the power dissipated (or generated) is P= IV, where V and I are the voltage across and current through a circuit element. We know that a resistor obeys OhmâÂÂs Law V = IR, which means that for a resistor, the power dissipated is P = 1²R=V²/R. Consider the following two circuits with identical batteries and re- sistors. A В C R R RSRS R If the power dissipated by the resistor in circuit A is P, what is the power dissipated by one resistor in circuit B? If the power dissipated by the resistor in circuit A is P, what is the power dissipated by one resistor in circuit C?

Inquiry into Physics
8th Edition
ISBN:9781337515863
Author:Ostdiek
Publisher:Ostdiek
Chapter7: Electricity
Section: Chapter Questions
Problem 35Q: (Indicates a review question, which means it requires only a basic understanding of the material to...
icon
Related questions
Question
9. The following question is about power dissipation in a resistor,
which we didnâÂÂt really cover in class. This topic is fairly
easy though. In a circuit, all the power delivered by the battery
must be dissipated by the elements to the circuit. This is simply
a statement of the conservation of energy. How much energy dis-
sipated depends on the resistance of the element and the voltage
across the resistor, or the current through it. The relevant equa-
tions for the problems are as follows. For a circuit element, the
power dissipated (or generated) is P = IV, where V and I are the
voltage across and current through a circuit element. We know
that a resistor obeys OhmâÂÂs Law V = IR, which means that
for a resistor, the power dissipated is P = 1²R=V²/R.
Consider the following two circuits with identical batteries and re-
sistors.
А
В
C
R
R
R RS
R
If the power dissipated by the resistor in circuit A is P, what is the
power dissipated by one resistor in circuit B?
If the power dissipated by the resistor in circuit A is P, what is the
power dissipated by one resistor in circuit C?
Transcribed Image Text:9. The following question is about power dissipation in a resistor, which we didnâÂÂt really cover in class. This topic is fairly easy though. In a circuit, all the power delivered by the battery must be dissipated by the elements to the circuit. This is simply a statement of the conservation of energy. How much energy dis- sipated depends on the resistance of the element and the voltage across the resistor, or the current through it. The relevant equa- tions for the problems are as follows. For a circuit element, the power dissipated (or generated) is P = IV, where V and I are the voltage across and current through a circuit element. We know that a resistor obeys OhmâÂÂs Law V = IR, which means that for a resistor, the power dissipated is P = 1²R=V²/R. Consider the following two circuits with identical batteries and re- sistors. А В C R R R RS R If the power dissipated by the resistor in circuit A is P, what is the power dissipated by one resistor in circuit B? If the power dissipated by the resistor in circuit A is P, what is the power dissipated by one resistor in circuit C?
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Combination of resistance
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Inquiry into Physics
Inquiry into Physics
Physics
ISBN:
9781337515863
Author:
Ostdiek
Publisher:
Cengage
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning