A 390-g metal container, insulated on the outside, holds 170.0 g of water in thermal equilibrium at 21.0°C. A 18.0-g ice cube, at -15.0°C, is dropped into the water, and when thermal equilibrium is reached the temperature is 12.0°C. Assume there is no heat exchange with the surroundings. The specific heat capacity of water is 4190 J/kg ∙ K, the specific heat capacity of ice is 2090  J/kg ∙ K and the heat of fusion is 3.34 × 105 J/kg. What is the specific heat capacity of the metal of the container?

Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Katz, Debora M.
Chapter21: Heat And The First Law Of Thermodynamics
Section: Chapter Questions
Problem 68PQ
icon
Related questions
Question
A 390-g metal container, insulated on the outside, holds 170.0 g of water in thermal equilibrium at 21.0°C. A 18.0-g ice cube, at -15.0°C, is dropped into the water, and when thermal equilibrium is reached the temperature is 12.0°C. Assume there is no heat exchange with the surroundings. The specific heat capacity of water is 4190 J/kg ∙ K, the specific heat capacity of ice is 2090  J/kg ∙ K and the heat of fusion is 3.34 × 105 J/kg. What is the specific heat capacity of the metal of the container?
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Calorimetry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College