A concentric tube heat exchanger is used to cool lubricating oil for a large diesel engine. The inner tube is constructed of 2 mm wall thickness stainless steel, having thermal conductivity 16 W/m K. The flow rate of cooling water through the inner tube (radius = 30 mm) is 0.3 kg/s. The flow rate of oil through the tube (radius = 50 mm) is 0.15 kg/s. Assume fully developed flow, if the oil cooler is to be used to cool oil from 90°C to 50°C using water available at 283K. The overall heat transfer coefficient is 21.9 W/(m2K). Calculate the length of the tube required for parallel (co-current) flow, and the length of the tube required for counter-current flow. The average heat capacity for oil is 2.131 kJ/(kgK) and for the water 4.178 kJ/(kgK).

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter10: Heat Exchangers
Section: Chapter Questions
Problem 10.16P
icon
Related questions
Question
Question B3.
A concentric tube heat exchanger is used to cool lubricating oil for
a large diesel engine. The inner tube is constructed of 2 mm wall
thickness stainless steel, having thermal conductivity 16 W/m K.
The flow rate of cooling water through the inner tube (radius = 30
mm) is 0.3 kg/s. The flow rate of oil through the tube (radius = 50
mm) is 0.15 kg/s. Assume fully developed flow, if the oil cooler is
to be used to cool oil from 90°C to 50°C using water available at
283K. The overall heat transfer coefficient is 21.9 W/(m2K).
Calculate the length of the tube required for parallel (co-current)
flow, and the length of the tube required for counter-current flow.
The average heat capacity for oil is 2.131 kJ/(kgK) and for the
water 4.178 kJ/(kgK).
Transcribed Image Text:Question B3. A concentric tube heat exchanger is used to cool lubricating oil for a large diesel engine. The inner tube is constructed of 2 mm wall thickness stainless steel, having thermal conductivity 16 W/m K. The flow rate of cooling water through the inner tube (radius = 30 mm) is 0.3 kg/s. The flow rate of oil through the tube (radius = 50 mm) is 0.15 kg/s. Assume fully developed flow, if the oil cooler is to be used to cool oil from 90°C to 50°C using water available at 283K. The overall heat transfer coefficient is 21.9 W/(m2K). Calculate the length of the tube required for parallel (co-current) flow, and the length of the tube required for counter-current flow. The average heat capacity for oil is 2.131 kJ/(kgK) and for the water 4.178 kJ/(kgK).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Heat Exchangers
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning
Refrigeration and Air Conditioning Technology (Mi…
Refrigeration and Air Conditioning Technology (Mi…
Mechanical Engineering
ISBN:
9781305578296
Author:
John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:
Cengage Learning